|
|
Auman, H.J., Coleman, H., Riley, H.E., Olale, F., Tsai, H.J., and Yelon, D. (2007) Functional Modulation of Cardiac Form through Regionally Confined Cell Shape Changes. PLoS Biology. 5(3):e53
|
|
|
|
Beqqali, A., Monshouwer-Kloots, J., Monteiro, R., Welling, M., Bakkers, J., Ehler, E., Verkleij, A., Mummery, C., and Passier, R. (2010) CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. Journal of Cell Science. 123(Pt 7):1141-1150
|
Berdougo, E., Coleman, H., Lee, D.H., Stainier, D.Y., and Yelon, D. (2003) Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development (Cambridge, England). 130(24):6121-6129
|
Bhakta, M., Padanad, M.S., Harris, J.P., Lubczyk, C., Amatruda, J.F., Munshi, N.V. (2018) pouC regulates expression of bmp4 during atrioventricular canal formation in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 248(2):173-188
|
|
Bonetti, M., Paardekooper Overman, J., Tessadori, F., Noël, E., Bakkers, J., den Hertog, J. (2014) Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development (Cambridge, England). 141:1961-70
|
Bu, H., Ding, Y., Li, J., Zhu, P., Shih, Y.H., Wang, M., Zhang, Y., Lin, X., Xu, X. (2021) Inhibition of mTOR or MAPK ameliorates vmhcl/myh7 cardiomyopathy in zebrafish. JCI insight. 6(24):
|
Budine, T.E., de Sena-Tomás, C., Williams, M.L.K., Sepich, D.S., Targoff, K.L., Solnica-Kreze, L. (2020) Gon4l/Udu Regulates Cardiomyocyte Proliferation and Maintenance of Ventricular Chamber Identity During Zebrafish Development. Developmental Biology. 462(2):223-234
|
Burczyk, M.S., Burkhalter, M.D., Tena, T.C., Grisanti, L.A., Kauk, M., Matysik, S., Donow, C., Kustermann, M., Rothe, M., Cui, Y., Raad, F., Laue, S., Moretti, A., Zimmermann, W.H., Wess, J., Kühl, M., Hoffmann, C., Tilley, D.G., Philipp, M. (2019) Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI insight. 4(20):
|
|
|
|
Bühler, A., Gahr, B.M., Park, D.D., Bertozzi, A., Boos, A., Dalvoy, M., Pott, A., Oswald, F., Kovall, R.A., Kühn, B., Weidinger, G., Rottbauer, W., Just, S. (2021) Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish. PLoS Genetics. 17:e1009890
|
Bühler, A., Kustermann, M., Bummer, T., Rottbauer, W., Sandri, M., Just, S. (2016) Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. International Journal of Molecular Sciences. 17(2)
|
Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. (2018) Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 33(1):696-710
|
Cai, W., Wang, Y., Luo, Y., Gao, L., Zhang, J., Jiang, Z., Fan, X., Li, F., Xie, Y., Wu, X., Li, Y., Yuan, W. (2023) asb5a/asb5b Double Knockout Affects Zebrafish Cardiac Contractile Function. International Journal of Molecular Sciences. 24(22):
|
Camarata, T., Krcmery, J., Snyder, D., Park, S., Topczewski, J., and Simon, H.G. (2010) Pdlim7 (LMP4) regulation of Tbx5 specifies zebrafish heart atrio-ventricular boundary and valve formation. Developmental Biology. 337(2):233-245
|
Campbell, C., Su, T., Lau, R.P., Shah, A., Laurie, P.C., Avalos, B., Aggio, J., Harris, E., Traver, D., Stachura, D.L. (2015) Zebrafish Embryonic Stromal Trunk (ZEST) cells support hematopoietic stem and progenitor cell (HSPC) proliferation, survival, and differentiation. Experimental hematology. 43(12):1047-61
|
|
Ceci, M., Bonvissuto, D., Papetti, F., Silvestri, F., Sette, C., Catalani, E., Cervia, D., Gornati, R., Romano, N. (2024) RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Scientific Reports. 14:2569825698
|
|
|
|
Chen, Z., Huang, W., Dahme, T., Rottbauer, W., Ackerman, M.J., and Xu, X. (2008) Depletion of Zebrafish Essential and Regulatory Myosin Light Chains Reduces Cardiac Function Through Distinct Mechanisms. Cardiovascular research. 79(1):97-108
|
Chen, Z., Zhou, Z., Peng, X., Sun, C., Yang, D., Li, C., Zhu, R., Zhang, P., Zheng, L., Tang, C. (2021) Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart. The journal of physiological sciences : JPS. 71:33
|
Cheng, F., Miao, L., Wu, Q., Gong, X., Xiong, J., Zhang, J. (2016) Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish. Development (Cambridge, England). 143(19):3522-3531
|
Cheng, L., Guo, X.F., Yang, X.Y., Chong, M., Cheng, J., Li, G., Gui, Y.H., and Lu, D.R. (2006) delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochemical and Biophysical Research Communications. 344(4):1290-1299
|
|
Chi, N.C., Shaw, R.M., De Val, S., Kang, G., Jan, L.Y., Black, B.L., and Stainier, D.Y. (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes & Development. 22(6):734-739
|
Chi, N.C., Shaw, R.M., Jungblut, B., Huisken, J., Ferrer, T., Arnaout, R., Scott, I., Beis, D., Xiao, T., Baier, H., Jan, L.Y., Tristani-Firouzi, M., and Stainier, D.Y. (2008) Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System. PLoS Biology. 6(5):e109
|
|
Choe, H., Kim, M.J., Jeon, H.J., Kim, K., Kim, C., Park, J., Shin, J., Lee, S.R., Lee, S.E. (2021) Acute toxicity of the insecticide EPN upon zebrafish (Danio rerio) embryos and its related adverse effects: Verification of abnormal cardiac development and seizure-like events. Ecotoxicology and environmental safety. 222:112544
|
Chopra, S.S., Stroud, D.M., Watanabe, H., Bennett, J.S., Burns, C.G., Wells, K.S., Yang, T., Zhong, T.P., and Roden, D.M. (2010) Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish. Circulation research. 106(8):1342-1350
|
|
Chrispijn, N.D., Elurbe, D.M., Mickoleit, M., Aben, M., de Bakker, D.E.M., Andralojc, K.M., Huisken, J., Bakkers, J., Kamminga, L.M. (2019) Loss of the Polycomb group protein Rnf2 results in derepression of tbx-transcription factors and defects in embryonic and cardiac development. Scientific Reports. 9:4327
|
Chu, L., Yin, H., Gao, L., Gao, L., Xia, Y., Zhang, C., Chen, Y., Liu, T., Huang, J., Boheler, K.R., Zhou, Y., Yang, H.T. (2020) Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. Science China. Life sciences. 64(2):255-268
|
|
|
Davide, B., Marcello, C., Carol, L., Veronica, V., Roberta, B., Davide, C., Claudio, S., Gornati, R., Nicla, R. (2022) Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model?. Biochimica et biophysica acta. Molecular basis of disease. 1868(10):166471
|
Delvaeye, M., Devriese, A., Zwerts, F., Betz, I., Moons, M., Autiero, M., and Conway, E.M. (2009) Role of the 2 zebrafish survivin genes in vasculo-angiogenesis, neurogenesis, cardiogenesis and hematopoiesis. BMC Developmental Biology. 9:25
|
DeMoya, R.A., Forman-Rubinsky, R.E., Fontaine, D., Shin, J., Watkins, S.C., Lo, C.W., Tsang, M. (2023) Sin3a associated protein 130 kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. Frontiers in cell and developmental biology. 11:11971091197109
|
Derrick, C.J., Sánchez-Posada, J., Hussein, F., Tessadori, F., Pollitt, E.J.G., Savage, A.M., Wilkinson, R.N., Chico, T.J., van Eeden, F.J., Bakkers, J., Noël, E.S. (2021) Asymmetric Hapln1a drives regionalised cardiac ECM expansion and promotes heart morphogenesis in zebrafish development. Cardiovascular research. 118(1):226-240
|
Dickover, M., Hegarty, J.M., Ly, K., Lopez, D., Yang, H., Zhang, R., Tedeschi, N., Hsiai, T.K., Chi, N.C. (2014) The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Developmental Biology. 389:182-91
|
Dimitriadi, A., Beis, D., Arvanitidis, C., Adriaens, D., Koumoundouros, G. (2018) Developmental temperature has persistent, sexually dimorphic effects on zebrafish cardiac anatomy. Scientific Reports. 8:8125
|
Ding, Y., Dvornikov, A.V., Ma, X., Zhang, H., Wang, Y., Lowerison, M., Packard, R.R., Wang, L., Chen, J., Zhang, Y., Hsiai, T., Lin, X., Xu, X. (2019) Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Disease models & mechanisms. 12(10):
|
|
Dohn, T.E., Ravisankar, P., Tirera, F.T., Martin, K.E., Gafranek, J.T., Duong, T.B., VanDyke, T.L., Touvron, M., Barske, L.A., Crump, J.G., Waxman, J.S. (2019) Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genetics. 15:e1007962
|
Dong, W., Yang, Z., Yang, F., Wang, J., Zhuang, Y., Xu, C., Zhang, B., Tian, X.L., and Liu, D. (2012) Suppression of rap1 impairs cardiac myofibrils and conduction system in zebrafish. PLoS One. 7(11):e50960
|
Duong, T.B., Ravisankar, P., Song, Y.C., Gafranek, J.T., Rydeen, A.B., Dohn, T.E., Barske, L.A., Crump, J.G., Waxman, J.S. (2017) Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Developmental Biology. 434(1):7-14
|
Dvornikov, A.V., Wang, M., Yang, J., Zhu, P., Le, T., Lin, X., Cao, H., Xu, X. (2019) Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. Journal of Molecular and Cellular Cardiology. 133:199-208
|
Ebert, A.M., Hume, G.L., Warren, K.S., Cook, N.P., Burns, C.G., Mohideen, M.A., Siegal, G., Yelon, D., Fishman, M.C., and Garrity, D.M. (2005) Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proceedings of the National Academy of Sciences of the United States of America. 102(49):17705-17710
|
Ebert, A.M., McAnelly, C.A., Handschy, A.V., Mueller, R.L., Horne, W.A., and Garrity, D.M. (2008) Genomic organization, expression, and phylogenetic analysis of Ca2+ channel β4 genes in 13 vertebrate species. Physiological Genomics. 35(2):133-144
|
El-Rass, S., Eisa-Beygi, S., Khong, E., Brand-Arzamendi, K., Mauro, A., Zhang, H., Clark, K.J., Ekker, S.C., Wen, X.Y. (2017) Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly.. Biology Open. 6(3):348-357
|
Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
|
|
Facchinello, N., Laquatra, C., Locatello, L., Beffagna, G., Brañas Casas, R., Fornetto, C., Dinarello, A., Martorano, L., Vettori, A., Risato, G., Celeghin, R., Meneghetti, G., Santoro, M.M., Delahodde, A., Vanzi, F., Rasola, A., Dalla Valle, L., Rasotto, M.B., Lodi, T., Baruffini, E., Argenton, F., Tiso, N. (2021) Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death & Disease. 12:100
|
Fang, Y., Gupta, V., Karra, R., Holdway, J.E., Kikuchi, K., and Poss, K.D. (2013) Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America. 110(33):13416-13421
|
|
Ferese, R., Bonetti, M., Consoli, F., Guida, V., Sarkozy, A., Lepri, F.R., Versacci, P., Gambardella, S., Calcagni, G., Margiotti, K., Sparascio, F.P., Hozhabri, H., Mazza, T., Digilio, M.C., Dallapiccola, B., Tartaglia, M., Marino, B., Hertog, J.D., De Luca, A. (2018) Heterozygous missense mutations in NFATC1 are associated with atrioventricular septal defect. Human Mutation. 39(10):1428-1441
|
|
Fouchécourt, S., Picolo, F., Elis, S., Lécureuil, C., Thélie, A., Govoroun, M., Brégeon, M., Papillier, P., Lareyre, J.J., Monget, P. (2019) An evolutionary approach to recover genes predominantly expressed in the testes of the zebrafish, chicken and mouse. BMC Evolutionary Biology. 19:137
|
Friedman, C.E., Cheetham, S.W., Negi, S., Mills, R.J., Ogawa, M., Redd, M.A., Chiu, H.S., Shen, S., Sun, Y., Mizikovsky, D., Bouveret, R., Chen, X., Voges, H.K., Paterson, S., De Angelis, J.E., Andersen, S.B., Cao, Y., Wu, Y., Jafrani, Y.M.A., Yoon, S., Faulkner, G.J., Smith, K.A., Porrello, E., Harvey, R.P., Hogan, B.M., Nguyen, Q., Zeng, J., Kikuchi, K., Hudson, J.E., Palpant, N.J. (2023) HOPX-associated molecular programs control cardiomyocyte cell states underpinning cardiac structure and function. Developmental Cell. 59(1):91-107.e6
|
|
Gafranek, J.T., D'Aniello, E., Ravisankar, P., Thakkar, K., Vagnozzi, R.J., Lim, H.W., Salomonis, N., Waxman, J.S. (2023) Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nature communications. 14:55095509
|
|
Garnaas, M.K., Cutting, C.C., Meyers, A., Kelsey, P.B., Harris, J.M., North, T.E., and Goessling, W. (2012) Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Developmental Biology. 372(2):178-189
|
|
|
|
Glenn, N.O., McKane, M., Kohli, V., Wen, K.K., Rubenstein, P.A., Bartmanm, T., and Sumanas, S. (2012) The W-Loop of Alpha-Cardiac Actin Is Critical for Heart Function and Endocardial Cushion Morphogenesis in Zebrafish. Molecular and cellular biology. 32(17):3527-3540
|
Gomes, R.S., Skroblin, P., Munster, A.B., Tomlins, H., Langley, S.R., Zampetaki, A., Yin, X., Wardle, F., Mayr, M. (2016) "Young at heart": Regenerative potential linked to immature cardiac phenotypes. Journal of Molecular and Cellular Cardiology. 92:105-8
|
|
Gou, D., Zhou, J., Song, Q., Wang, Z., Bai, X., Zhang, Y., Zuo, M., Wang, F., Chen, A., Yousaf, M., Yang, Z., Peng, H., Li, K., Xie, W., Tang, J., Yao, Y., Han, M., Ke, T., Chen, Q., Xu, C., Wang, Q. (2020) Mog1 knockout causes cardiac hypertrophy and heart failure by downregulating tbx5-cryab-hspb2 signaling in zebrafish. Acta physiologica (Oxford, England). 231(3):e13567
|
Haas, J., Frese, K.S., Park, Y.J., Keller, A., Vogel, B., Lindroth, A.M., Weichenhan, D., Franke, J., Fischer, S., Bauer, A., Marquart, S., Sedaghat-Hamedani, F., Kayvanpour, E., Kohler, D., Wolf, N.M., Hassel, S., Nietsch, R., Wieland, T., Ehlermann, P., Schultz, J.H., Dosch, A., Mereles, D., Hardt, S., Backs, J., Hoheisel, J.D., Plass, C., Katus, H.A., and Meder, B. (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Molecular Medicine. 5(3):413-429
|
|
|
Han, C.R., Wang, H., Hoffmann, V., Zerfas, P., Kruhlak, M., Cheng, S.Y. (2020) Thyroid hormone receptor α mutations cause heart defects in zebrafish. Thyroid : official journal of the American Thyroid Association. 31(2):315-326
|
Hesaraki, M., Bora, U., Pahlavan, S., Salehi, N., Mousavi, S.A., Barekat, M., Rasouli, S.J., Baharvand, H., Ozhan, G., Totonchi, M. (2022) A Novel Missense Variant in Actin Binding Domain of MYH7 Is Associated With Left Ventricular Noncompaction. Frontiers in cardiovascular medicine. 9:839862
|
Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C.B., and Hughes, S.M. (2012) Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Developmental Biology. 369(2):199-210
|
Hisano, Y., Inoue, A., Okudaira, M., Taimatsu, K., Matsumoto, H., Kotani, H., Ohga, R., Aoki, J., Kawahara, A. (2015) Maternal and Zygotic Sphingosine Kinase 2 are Indispensable for Cardiac Development in Zebrafish. The Journal of biological chemistry. 290(24):14841-51
|
|
Holowiecki, A., Linstrum, K., Ravisankar, P., Chetal, K., Salomonis, N., Waxman, J.S. (2020) Pbx4 limits heart size and fosters arch artery formation through partitioning second heart field progenitors and restricting proliferation. Development (Cambridge, England). 147(5):
|
|
Honkoop, H., de Bakker, D.E., Aharonov, A., Kruse, F., Shakked, A., Nguyen, P.D., de Heus, C., Garric, L., Muraro, M.J., Shoffner, A., Tessadori, F., Peterson, J.C., Noort, W., Bertozzi, A., Weidinger, G., Posthuma, G., Grun, D., van der Laarse, W.J., Klumperman, J., Jaspers, R.T., Poss, K.D., van Oudenaarden, A., Tzahor, E., Bakkers, J. (2019) Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLIFE. 8:
|
|
Hsieh, F.C., Lu, Y.F., Liau, I., Chen, C.C., Cheng, C.M., Hsiao, C.D., Hwang, S.L. (2018) Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Scientific Reports. 8:7856
|
Hsu, P.J., Wang, H.D., Tseng, Y.C., Pan, S.W., Sampurna, B.P., Jong, Y.J., Yuh, C.H. (2021) L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish. Journal of Biomedical Science. 28:8
|
Hu, M., Liu, P., Lu, S., Wang, Z., Lyu, Z., Liu, H., Sun, Y., Liu, F., Tian, J. (2021) Myocardial protective effect and transcriptome profiling of Naoxintong on cardiomyopathy in zebrafish. Chinese Medicine. 16:119
|
Hu, X., Gan, S., Xie, G., Li, L., Chen, C., Ding, X., Han, M., Xiang, S., Zhang, J. (2014) KCTD10 is critical for heart and blood vessel development of zebrafish. Acta biochimica et biophysica Sinica. 46:377-86
|
Huang, H., Jin, T., He, J., Ding, Q., Xu, D., Wang, L., Zhang, Y., Pan, Y., Wang, Z., and Chen, Y. (2012) Progesterone and AdipoQ Receptor 11 Links Ras Signaling to Cardiac Development in Zebrafish. Arterioscler. Thromb. Vasc. Biol.. 32(9):2158-2170
|
|
Huang, M., Jiao, J., Wang, J., Xia, Z., Zhang, Y. (2017) Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. Environmental pollution (Barking, Essex : 1987). 234:656-666
|
Huang, Y., Chen, Z., Meng, Y., Wei, Y., Xu, Z., Ma, J., Zhong, K., Cao, Z., Liao, X., Lu, H. (2020) Famoxadone-cymoxanil induced cardiotoxicity in zebrafish embryos. Ecotoxicology and environmental safety. 205:111339
|
Huang, Y., Ma, J., Meng, Y., Wei, Y., Xie, S., Jiang, P., Wang, Z., Chen, X., Liu, Z., Zhong, K., Cao, Z., Liao, X., Xiao, J., Lu, H. (2020) Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. Environmental pollution (Barking, Essex : 1987). 265:114775
|
Huang, Y., Wang, W.F., Huang, C.X., Li, X.H., Liu, H., Wang, H.L. (2022) miR-731 modulates the zebrafish heart morphogenesis via targeting Calcineurin/Nfatc3a pathway. Biochimica et biophysica acta. General subjects. 1866(6):130133
|
Incardona, J.P., Carls, M.G., Teraoka, H., Sloan, C.A., Collier, T.K., and Scholz, N.L. (2005) Aryl Hydrocarbon Receptor-Independent Toxicity of Weathered Crude Oil during Fish Development. Environmental health perspectives. 113(12):1755-1762
|
Jia, H., King, I.N., Chopra, S.S., Wan, H., Ni, T.T., Jiang, C., Guan, X., Wells, S., Srivastava, D., and Zhong, T.P. (2007) Vertebrate heart growth is regulated by functional antagonism between Gridlock and Gata5. Proceedings of the National Academy of Sciences of the United States of America. 104(35):14008-14013
|
|
Jin, M., Zhang, H., Xu, B., Li, Y., Qin, H., Yu, S., He, J. (2022) Jag2b-Notch3/1b-mediated neuron-to-glia crosstalk controls retinal gliogenesis. EMBO reports. 23(10):e54922
|
Juan, T., Bellec, M., Cardoso, B., Athéa, H., Fukuda, N., Albu, M., Günther, S., Looso, M., Stainier, D.Y.R. (2024) Control of cardiac contractions using Cre-lox and degron strategies in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 121:e2309842121e2309842121
|
Junker, J.P., Noël, E.S., Guryev, V., Peterson, K.A., Shah, G., Huisken, J., McMahon, A.P., Berezikov, E., Bakkers, J., van Oudenaarden, A. (2014) Genome-wide RNA Tomography in the Zebrafish Embryo. Cell. 159:662-75
|
Just, S., Berger, I.M., Meder, B., Backs, J., Keller, A., Marquart, S., Frese, K., Patzel, E., Rauch, G.J., Tübingen 2000 Screen Consortium, Katus, H.A., and Rottbauer, W. (2011) Protein Kinase D2 Controls Cardiac Valve Formation in Zebrafish by Regulating Histone Deacetylase 5 Activity. Circulation. 124(3):324-34
|
Just, S., Meder, B., Berger, I.M., Etard, C., Trano, N., Patzel, E., Hassel, D., Marquart, S., Dahme, T., Vogel, B., Fishman, M.C., Katus, H.A., Strähle, U., and Rottbauer, W. (2011) The myosin-interacting protein SMYD1 is essential for sarcomere organization. Journal of Cell Science. 124(Pt 18):3127-36
|
Kahsay, A., Dennhag, N., Liu, J.X., Nord, H., Rönnbäck, H., Thorell, A.E., von Hofsten, J., Pedrosa Domellöf, F. (2024) Obscurin Maintains Myofiber Identity in Extraocular Muscles. Investigative ophthalmology & visual science. 65:1919
|
Kao, R.M., Rurik, J.G., Farr, G.H., Dong, X.R., Majesky, M.W., Maves, L. (2015) Pbx4 is Required for the Temporal Onset of Zebrafish Myocardial Differentiation. Journal of developmental biology. 3:93-111
|
Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., and Mochizuki, N. (2009) The Sphingolipid Transporter Spns2 Functions in Migration of Zebrafish Myocardial Precursors. Science (New York, N.Y.). 323(5913):524-527
|
Kayvanpour, E., Wisdom, M., Lackner, M.K., Sedaghat-Hamedani, F., Boeckel, J.N., Müller, M., Eghbalian, R., Dudek, J., Doroudgar, S., Maack, C., Frey, N., Meder, B. (2022) VARS2 Depletion Leads to Activation of the Integrated Stress Response and Disruptions in Mitochondrial Fatty Acid Oxidation. International Journal of Molecular Sciences. 23(13)
|
|
Kent, M.E., Hu, B., Eggleston, T.M., Squires, R.S., Zimmerman, K.A., Weiss, R.M., Roghair, R.D., Lin, F., Cornell, R.A., Haskell, S.E. (2022) Hypersensitivity of zebrafish htr2b mutant embryos to sertraline indicates a role for serotonin signaling in cardiac development. Journal of Cardiovascular Pharmacology. 80(2):261-269
|
Khatri, D., Zizioli, D., Tiso, N., Facchinello, N., Vezzoli, S., Gianoncelli, A., Memo, M., Monti, E., Borsani, G., Finazzi, D. (2016) Down-regulation of coasy, the gene associated with NBIA-VI, reduces Bmp signaling, perturbs dorso-ventral patterning and alters neuronal development in zebrafish. Scientific Reports. 6:37660
|
Kikuchi, K., Holdway, J.E., Major, R.J., Blum, N., Dahn, R.D., Begemann, G., and Poss, K.D. (2011) Retinoic Acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Developmental Cell. 20(3):397-404
|
Kim, C., Choe, H., Park, J., Kim, G., Kim, K., Jeon, H.J., Moon, J.K., Kim, M.J., Lee, S.E. (2020) Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines. Environmental pollution (Barking, Essex : 1987). 270:116087
|
Kim, J.D., Kim, E., Koun, S., Ham, H.J., Rhee, M., Kim, M.J., Huh, T.L. (2015) Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis. Molecules and cells. 38(6):580-6
|
Kim, J.D., Kim, H.J., Koun, S., Ham, H.J., Kim, M.J., Rhee, M., Huh, T.L. (2014) Zebrafish Crip2 Plays a Critical Role in Atrioventricular Valve Development by Downregulating the Expression of ECM Genes in the Endocardial Cushion. Molecules and cells. 37(5):406-11
|
|
Kim, M., Lu, L., Dvornikov, A.V., Ma, X., Ding, Y., Zhu, P., Olson, T.M., Lin, X., Xu, X. (2021) TFEB Overexpression, Not mTOR Inhibition, Ameliorates RagCS75Y Cardiomyopathy. International Journal of Molecular Sciences. 22(11):
|
Kim, Y.C., Lee, S.R., Jeon, H.J., Kim, K., Kim, M.J., Choi, S.D., Lee, S.E. (2020) Acute toxicities of fluorene, fluorene-1-carboxylic acid, and fluorene-9-carboxylic acid on zebrafish embryos (Danio rerio): Molecular mechanisms of developmental toxicities of fluorene-1-carboxylic acid. Chemosphere. 260:127622
|
Ko, S.K., Jin, H.J., Jung, D.W., Tian, X., and Shin, I. (2009) Cardiosulfa, a Small Molecule that Induces Abnormal Heart Development in Zebrafish, and Its Biological Implications. Angewandte Chemie (International ed. in English). 48(42):7809-7812
|
|
|
Lan, Y., Pan, H., Li, C., Banks, K.M., Sam, J., Ding, B., Elemento, O., Goll, M.G., Evans, T. (2019) TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Reports. 26:720-732.e4
|
Lange, M., Kaynak, B., Forster, U.B., Tönjes, M., Fischer, J.J., Grimm, C., Schlesinger, J., Just, S., Dunkel, I., Krueger, T., Mebus, S., Lehrach, H., Lurz, R., Gobom, J., Rottbauer, W., Abdelilah-Seyfried, S., and Sperling, S. (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes & Development. 22(17):2370-2384
|
Langenbacher, A.D., Dong, Y., Shu, X., Choi, J., Nicoll, D.A., Goldhaber, J.I., Philipson, K.D., and Chen, J.N. (2005) Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 102(49):17699-17704
|
Langenbacher, A.D., Nguyen, C.T., Cavanaugh, A.M., Huang, J., Lu, F., and Chen, J.N. (2011) The PAF1 complex differentially regulates cardiomyocyte specification. Developmental Biology. 353(1):19-28
|
|
Lee, H.C., Tsai, J.N., Liao, P.Y., Tsai, W.Y., Lin, K.Y., Chuang, C.C., Sun, C.K., Chang, W.C., and Tsai, H.J. (2007) Glycogen synthase kinase 3alpha and 3beta have distinct functions during cardiogenesis of zebrafish embryo. BMC Developmental Biology. 7(1):93
|
Lei, L., Yan, S.Y., Yang, R., Chen, J.Y., Li, Y., Bu, Y., Chang, N., Zhou, Q., Zhu, X., Li, C.Y., Xiong, J.W. (2017) Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic acids research. 45(6):3422-3436
|
|
Li, J., Liu, F., Lv, Y., Sun, K., Zhao, Y., Reilly, J., Zhang, Y., Tu, J., Yu, S., Liu, X., Qin, Y., Huang, Y., Gao, P., Jia, D., Chen, X., Han, Y., Shu, X., Luo, D., Tang, Z., Liu, M. (2021) Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic acids research. 49(4):2027-2043
|
|
Li, L., Tai, Z., Liu, W., Luo, Y., Wu, Y., Lin, S., Liu, M., Gao, B., Liu, J.X. (2023) Copper overload impairs hematopoietic stem and progenitor cell proliferation via prompting HSF1/SP1 aggregation and the subsequently downregulating FOXM1-Cytoskeleton axis. iScience. 26:106406106406
|
Li, M., Hu, X., Zhu, J., Zhu, C., Zhu, S., Liu, X., Xu, J., Han, S., Yu, Z. (2014) Overexpression of miR-19b Impairs Cardiac Development in Zebrafish by Targeting ctnnb1. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 33:1988-2002
|
Li, M., Wang, X., Zhu, J., Zhu, S., Hu, X., Zhu, C., Guo, X., Yu, Z., Han, S. (2014) Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Molecular biology reports. 41(12):7973-83
|
Li, M., Yao, L., Chen, H., Ni, X., Xu, Y., Dong, W., Fang, M., Chen, D., Aowuliji, ., Xu, L., Zhao, B., Deng, J., Kwok, K.W., Yang, J., Dong, W. (2020) Chiral toxicity of muscone to embryonic zebrafish heart. Aquatic toxicology (Amsterdam, Netherlands). 222:105451
|
Li, X., Gao, A., Wang, Y., Chen, M., Peng, J., Yan, H., Zhao, X., Feng, X., Chen, D. (2016) Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae. Biology Open. 5(8):1128-33
|
|
Liu, L., Fei, F., Zhang, R., Wu, F., Yang, Q., Wang, F., Sun, S., Zhao, H., Li, Q., Wang, L., Wang, Y., Gui, Y., Wang, X. (2019) Combinatorial genetic replenishments in myocardial and outflow tract tissues restore heart function in tnnt2 mutant zebrafish. Biology Open. 8(12):
|
Liu, Q., Dalman, M., Chen, Y., Akhter, M., Brahmandam, S., Patel, Y., Lowe, J., Thakkar, M., Gregory, A.V., Phelps, D., Riley, C., and Londraville, R.L. (2012) Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development. General and comparative endocrinology. 178(3):562-572
|
Lu, G., Ren, S., Korge, P., Choi, J., Dong, Y., Weiss, J., Koehler, C., Chen, J.N, and Wang, Y. (2007) A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes & Development. 21(7):784-796
|
Lu, J.H., Lu, J.K., Choo, S.L., Li, Y.C., Yeh, H.W., Shiue, J.F., and Yeh, V.C. (2008) Cascade effect of cardiac myogenesis gene expression during cardiac looping in tbx5 knockdown zebrafish embryos. Journal of Biomedical Science. 15(6):779-787
|
|
Lv, F., Ge, X., Qian, P., Lu, X., Liu, D., Chen, C. (2022) Neuron navigator 3 (NAV3) is required for heart development in zebrafish. Fish physiology and biochemistry. 48(1):173-183
|
Ma, J., Gu, Y., Liu, J., Song, J., Zhou, T., Jiang, M., Wen, Y., Guo, X., Zhou, Z., Sha, J., He, J., Hu, Z., Luo, L., Liu, M. (2022) Functional screening of congenital heart disease risk loci identifies 5 genes essential for heart development in zebrafish. Cellular and molecular life sciences : CMLS. 80:1919
|
Ma, J., Huang, Y., Jiang, P., Liu, Z., Luo, Q., Zhong, K., Yuan, W., Meng, Y., Lu, H. (2021) Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. Aquatic toxicology (Amsterdam, Netherlands). 237:105870
|
Ma, J., Huang, Y., Peng, Y., Xu, Z., Wang, Z., Chen, X., Xie, S., Jiang, P., Zhong, K., Lu, H. (2021) Bifenazate exposure induces cardiotoxicity in zebrafish embryos. Environmental pollution (Barking, Essex : 1987). 274:116539
|
Mably, J.D., Chuang, L.P., Serluca, F.C., Mohideen, M.A., Chen, J.N., and Fishman, M.C. (2006) santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development (Cambridge, England). 133(16):3139-3146
|
|
Maragh, S., Miller, R.A., Bessling, S.L., McGaughey, D.M., Wessels, M.W., de Graaf, B., Stone, E.A., Bertoli-Avella, A.M., Gearhart, J.D., Fisher, S., and McCallion, A.S. (2011) Identification of RNA binding motif proteins essential for cardiovascular development. BMC Developmental Biology. 11(1):62
|
|
|
|
|
|
Maves, L., Waskiewicz, A.J., Paul, B., Cao, Y., Tyler, A., Moens, C.B., and Tapscott, S.J. (2007) Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development (Cambridge, England). 134(18):3371-3382
|
McIntyre, J., Edmunds, R., Redig, M., Mudrock, E., Davis, J., Incardona, J.P., Stark, J.D., Scholz, N. (2016) Confirmation of stormwater bioretention treatment effectiveness using molecular indicators of cardiovascular toxicity in developing fish. Environmental science & technology. 50(3):1561-9
|
Meng, Y., Zhong, K., Chen, S., Huang, Y., Wei, Y., Wu, J., Liu, J., Xu, Z., Guo, J., Liu, F., Lu, H. (2021) Cardiac toxicity assessment of pendimethalin in zebrafish embryos. Ecotoxicology and environmental safety. 222:112514
|
Meng, Y., Zhong, K., Xiao, J., Huang, Y., Wei, Y., Tang, L., Chen, S., Wu, J., Ma, J., Cao, Z., Liao, X., Lu, H. (2020) Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. Chemosphere. 255:126889
|
|
|
Milan, D.J., Giokas, A.C., Serluca, F.C., Peterson, R.T., and MacRae, C.A. (2006) Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development (Cambridge, England). 133(6):1125-1132
|
|
Miyasaka, K.Y., Kida, Y.S., Banjo, T., Ueki, Y., Nagayama, K., Matsumoto, T., Sato, M., and Ogura, T. (2011) Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. Mechanisms of Development. 128(1-2):18-28
|
|
Molina, G., Vogt, A., Bakan, A., Dai, W., de Oliveira, P.Q., Znosko, W., Smithgall, T.E., Bahar, I., Lazo, J.S., Day, B.W., and Tsang, M. (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature Chemical Biology. 5(9):680-687
|
Monte, E., Mouillesseaux, K., Chen, H., Kimball, T., Ren, S., Wang, Y., Chen, J.N., Vondriska, T.M., and Franklin, S. (2013) Systems Proteomics of Cardiac Chromatin Identifies Nucleolin as a Regulator of Growth and Cellular Plasticity in Cardiomyocytes. American journal of physiology. Heart and circulatory physiology. 305(11):H1624-38
|
Moriarty, M.A., Ryan, R., Lalor, P., Dockery, P., Byrnes, L., and Grealy, M. (2012) Loss of plakophilin 2 disrupts heart development in zebrafish. The International journal of developmental biology. 56(9):711-718
|
Morton, S.U., Scherz, P.J., Cordes, K.R., Ivey, K.N., Stainier, D.Y., and Srivastava, D. (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proceedings of the National Academy of Sciences of the United States of America. 105(46):17830-17835
|
Müller, I.I., Melville, D.B., Tanwar, V., Rybski, W.M., Mukherjee, A., Shoemaker, B.M., Wang, W.D., Schoenhard, J.A., Roden, D.M., Darbar, D., Knapik, E.W., and Hatzopoulos, A.K. (2013) Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. Disease models & mechanisms. 6(2):332-341
|
Münch, J., Grivas, D., González-Rajal, Á., Torregrosa-Carrión, R., de la Pompa, J.L. (2017) Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart.. Development (Cambridge, England). 144(8):1425-1440
|
Nagata, Y., Yamagishi, M., Konno, T., Nakanishi, C., Asano, Y., Ito, S., Nakajima, Y., Seguchi, O., Fujino, N., Kawashiri, M.A., Takashima, S., Kitakaze, M., Hayashi, K. (2017) Heat Failure Phenotypes Induced by Knockdown of DAPIT in Zebrafish: A New Insight into Mechanism of Dilated Cardiomyopathy. Scientific Reports. 7:17417
|
Nevis, K., Obregon, P., Walsh, C., Guner-Ataman, B., Burns, C.G., and Burns, C.E. (2013) Tbx1 is required for second heart field proliferation in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 242(5):540-549
|
|
Ni, T.T., Rellinger, E.J., Mukherjee, A., Xie, S., Stephens, L., Thorne, C.A., Kim, K., Hu, J., Lee, E., Marnett, L., Hatzopoulos, A.K., and Zhong, T.P. (2011) Discovering Small Molecules that Promote Cardiomyocyte Generation by Modulating Wnt Signaling. Chemistry & Biology. 18(12):1658-1668
|
Nishiyama, T., Kaneda, R., Ono, T., Tohyama, S., Hashimoto, H., Endo, J., Tsuruta, H., Yuasa, S., Ieda, M., Makino, S., and Fukuda, K. (2012) miR-142-3p is essential for hematopoiesis and affects cardiac cell fate in zebrafish. Biochemical and Biophysical Research Communications. 425(4):755-761
|
Nolte, H., Konzer, A., Ruhs, A., Jungblut, B., Braun, T., Krüger, M. (2014) Global protein expression profiling of zebrafish organs based on in vivo incorporation of stable isotopes. Journal of Proteome Research. 13:2162-74
|
|
Nunes Santos, L., Sousa Costa, Â.M., Nikolov, M., Carvalho, J.E., Coelho Sampaio, A., Stockdale, F.E., Wang, G.F., Andrade Castillo, H., Bortoletto Grizante, M., Dudczig, S., Vasconcelos, M., Rosenthal, N., Jusuf, P.R., Nim, H.T., de Oliveira, P., Guimarães de Freitas Matos, T., Nikovits, W., Tambones, I.L., Figueira, A.C.M., Schubert, M., Ramialison, M., Xavier-Neto, J. (2024) Unraveling the evolutionary origin of the complex Nuclear Receptor Element (cNRE), a cis-regulatory module required for preferential expression in the atrial chamber. Communications biology. 7:371371
|
Ocaña, O.H., Coskun, H., Minguillón, C., Murawala, P., Tanaka, E.M., Galcerán, J., Muñoz-Chápuli, R., Nieto, M.A. (2017) A right-handed signalling pathway drives heart looping in vertebrates. Nature. 549:86-90
|
|
Paige, S.L., Thomas, S., Stoick-Cooper, C.L., Wang, H., Maves, L., Sandstrom, R., Pabon, L., Reinecke, H., Pratt, G., Keller, G., Moon, R.T., Stamatoyannopoulos, J., and Murry, C.E. (2012) A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development. Cell. 151(1):221-232
|
Palencia-Desai, S., Kohli, V., Kang, J., Chi, N.C., Black, B.L., and Sumanas, S. (2011) Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function. Development (Cambridge, England). 138(21):4721-4732
|
|
Paone, C., Rudeck, S., Etard, C., Strähle, U., Rottbauer, W., Just, S. (2018) Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochemical and Biophysical Research Communications. 496(2):339-345
|
Park, J.S., Kim, H.S., Kim, J.D., Seo, J., Chung, K.S., Lee, H.S., Huh, T.L., Jo, I., and Kim, Y.O. (2009) Isolation of a ventricle-specific promoter for the zebrafish ventricular myosin heavy chain (vmhc) gene and its regulation by GATA factors during embryonic heart development. Developmental Dynamics : an official publication of the American Association of Anatomists. 238(6):1574-1581
|
Patra, C., Diehl, F., Ferrazzi, F., van Amerongen, M.J., Novoyatleva, T., Schaefer, L., Mühlfeld, C., Jungblut, B., and Engel, F.B. (2011) Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish. Development (Cambridge, England). 138(20):4499-4509
|
|
|
|
|
|
Poon, K.L., Tan, K.T., Wei, Y.Y., Ng, C.P., Colman, A., Korzh, V., and Xu, X.Q. (2012) RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovascular research. 94(3):418-427
|
Powell, R., Bubenshchikova, E., Fukuyo, Y., Hsu, C., Lakiza, O., Nomura, H., Renfrew, E., Garrity, D., Obara, T. (2016) Wtip is required for proepicardial organ specification and cardiac left/right asymmetry in zebrafish. Molecular Medicine Reports. 14(3):2665-78
|
Pradhan, A., Zeng, X.I., Sidhwani, P., Marques, S.R., George, V., Targoff, K.L., Chi, N.C., Yelon, D. (2017) FGF signaling enforces cardiac chamber identity in the developing ventricle. Development (Cambridge, England). 144(7):1328-1338
|
Qu, X., Jia, H., Garrity, D.M., Tompkins, K., Batts, L., Appel, B., Zhong, T.P., and Baldwin, H.S. (2008) ndrg4 is required for normal myocyte proliferation during early cardiac development in zebrafish. Developmental Biology. 317(2):486-496
|
Ramachandran, K.V., Hennessey, J.A., Barnett, A.S., Yin, X., Stadt, H.A., Foster, E., Shah, R.A., Yazawa, M., Dolmetsch, R.E., Kirby, M.L., and Pitt, G.S. (2013) Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. J. Clin. Invest.. 123(4):1638-46
|
|
Razaghi, B., Steele, S.L., Prykhozhij, S.V., Stoyek, M.R., Hill, J.A., Cooper, M.D., McDonald, L., Lin, W., Daugaard, M., Crapoulet, N., Chacko, S., Lewis, S., Scott, I.C., Sorensen, P.H.B., Berman, J.N. (2017) hace1 influences zebrafish cardiac development via ROS-dependent mechanisms. Developmental Dynamics : an official publication of the American Association of Anatomists. 247(2):289-303
|
|
|
|
Rottbauer, W., Just, S., Wessels, G., Trano, N., Most, P., Katus, H.A., and Fishman, M.C. (2005) VEGF-PLC{gamma}1 pathway controls cardiac contractility in the embryonic heart. Genes & Development. 19(13):1624-1634
|
Rottbauer, W., Wessels, G., Dahme, T., Just, S., Trano, N., Hassel, D., Burns, C.G., Katus, H.A., and Fishman, M.C. (2006) Cardiac Myosin Light Chain-2. A Novel Essential Component of Thick-Myofilament Assembly and Contractility of the Heart. Circulation research. 99(3):323-331
|
Rydeen, A., Voisin, N., D'Aniello, E., Ravisankar, P., Devignes, C.S., Waxman, J.S. (2015) Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling. Developmental Biology. 405(1):47-55
|
|
|
|
Sam, J., Mercer, E.J., Torregroza, I., Banks, K.M., Evans, T. (2020) Specificity, redundancy and dosage thresholds among gata4/5/6 genes during zebrafish cardiogenesis. Biology Open. 9(6):
|
|
Samson, S.C., Ferrer, T., Jou, C.J., Sachse, F.B., Shankaran, S.S., Shaw, R.M., Chi, N.C., Tristani-Firouzi, M., and Yost, H.J. (2013) 3-OST-7 regulates BMP-dependent cardiac contraction. PLoS Biology. 11(12):e1001727
|
San, B., Chrispijn, N.D., Wittkopp, N., van Heeringen, S.J., Lagendijk, A.K., Aben, M., Bakkers, J., Ketting, R.F., Kamminga, L.M. (2016) Normal formation of a vertebrate body plan and loss of tissue maintenance in the absence of ezh2. Scientific Reports. 6:24658
|
Santos-Ledo, A., Washer, S., Dhanaseelan, T., Eley, L., Alqatani, A., Chrystal, P.W., Papoutsi, T., Henderson, D.J., Chaudhry, B. (2020) Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genetics. 16:e1008782
|
|
Sasagawa, S., Nishimura, Y., Okabe, S., Murakami, S., Ashikawa, Y., Yuge, M., Kawaguchi, K., Kawase, R., Okamoto, R., Ito, M., Tanaka, T. (2016) Downregulation of GSTK1 Is a Common Mechanism Underlying Hypertrophic Cardiomyopathy. Frontiers in pharmacology. 7:162
|
Scott, I.C., Masri, B., D'Amico, L.A., Jin, S.W., Jungblut, B., Wehman, A.M., Baier, H., Audigier, Y., and Stainier, D.Y. (2007) The G protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Developmental Cell. 12(3):403-413
|
|
|
Sharma, D., Sehgal, P., Mathew, S., Vellarikkal, S.K., Singh, A.R., Kapoor, S., Jayarajan, R., Scaria, V., Sivasubbu, S. (2019) A genome-wide map of circular RNAs in adult zebrafish. Scientific Reports. 9:3432
|
|
Shi, X., Zhang, Y., Chen, R., Gong, Y., Zhang, M., Guan, R., Rotstein, O.D., Liu, X., Wen, X.Y. (2020) ndufa7 plays a critical role in cardiac hypertrophy. Journal of Cellular and Molecular Medicine. 24(22):13151-13162
|
Shi, X., Zhang, Y., Gong, Y., Chen, M., Brand-Arzamendi, K., Liu, X., Wen, X.Y. (2020) Zebrafish hhatla is involved in cardiac hypertrophy. Journal of Cellular Physiology. 236(5):3700-3709
|
Shih, Y.H., Zhang, Y., Ding, Y., Ross, C.A., Li, H., Olson, T.M., Xu, X. (2015) Cardiac Transcriptome and Dilated Cardiomyopathy Genes in Zebrafish. Circulation. Cardiovascular genetics. 8(2):261-9
|
Shu, X., Cheng, K., Patel, N., Chen, F., Joseph, E., Tsai, H.-J., and Chen, J.-N. (2003) Na,K-ATPase is essential for embryonic heart development in the zebrafish. Development (Cambridge, England). 130:6165-6173
|
Siddique, B.S., Kinoshita, S., Wongkarangkana, C., Asakawa, S., Watabe, S. (2016) Evolution and Distribution of Teleost myomiRNAs: Functionally Diversified myomiRs in Teleosts. Marine biotechnology (New York, N.Y.). 18:436-47
|
Sidhwani, P., Leerberg, D.M., Boezio, G.L.M., Capasso, T.L., Yang, H., Chi, N.C., Roman, B.L., Stainier, D.Y.R., Yelon, D. (2020) Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development (Cambridge, England). 147(12):
|
|
Singh Angom, R., Wang, Y., Wang, E., Dutta, S., Mukhopadhyay, D. (2023) Conditional, Tissue-Specific CRISPR/Cas9 Vector System in Zebrafish Reveals the Role of Nrp1b in Heart Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology. 43(10):1921-1934
|
Singh, A.R., Sivadas, A., Sabharwal, A., Vellarikal, S.K., Jayarajan, R., Verma, A., Kapoor, S., Joshi, A., Scaria, V., Sivasubbu, S. (2016) Chamber Specific Gene Expression Landscape of the Zebrafish Heart. PLoS One. 11:e0147823
|
Smith, K.A., Chocron, S., von der Hardt, S., de Pater, E., Soufan, A., Bussmann, J., Schulte-Merker, S., Hammerschmidt, M., and Bakkers, J. (2008) Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Developmental Cell. 14(2):287-297
|
Smith, K.A., Lagendijk, A.K., Courtney, A.D., Chen, H., Paterson, S., Hogan, B.M., Wicking, C., and Bakkers, J. (2011) Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development. Development (Cambridge, England). 138(19):4193-4198
|
Sogah, V.M., Serluca, F.C., Fishman, M.C., Yelon, D.L., MacRae, C.A., and Mably, J.D. (2010) Distinct troponin C isoform requirements in cardiac and skeletal muscle. Developmental Dynamics : an official publication of the American Association of Anatomists. 239(11):3115-3123
|
|
|
Spaich, S., Will, R.D., Just, S., Spaich, S., Kuhn, C., Frank, D., Berger, I., Wiemann, S., Korn, B., Koegl, M., Backs, J., Katus, H.A., Rottbauer, W., and Frey, N. (2012) Fbxl22, A Cardiac-Enriched F-Box Protein, Regulates Sarcomeric Protein Turnover and is Essential for Maintenance of Contractile Function In Vivo. Circulation research. 111(12):1504-1516
|
|
Sultana, N., Nag, K., Hoshijima, K., Laird, D.W., Kawakami, A., and Hirose, S. (2008) Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proceedings of the National Academy of Sciences of the United States of America. 105(12):4763-4768
|
|
Sun, S., Gui, Y., Wang, Y., Qian, L., Liu, X., Jiang, Q., and Song, H. (2009) Effects of methotrexate on the developments of heart and vessel in zebrafish. Acta biochimica et biophysica Sinica. 41(1):86-96
|
Sun, Y., Cao, Y., Tong, L., Tao, F., Wang, X., Wu, H., Wang, M. (2020) Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. Chemosphere. 251:126418
|
|
|
Takeuchi, J.K., Lou, X., Alexander, J.M., Sugizaki, H., Delgado-Olguín, P., Holloway, A.K., Mori, A.D., Wylie, J.N., Munson, C., Zhu, Y., Zhou, Y.Q., Yeh, R.F., Henkelman, R.M., Harvey, R.P., Metzger, D., Chambon, P., Stainier, D.Y., Pollard, K.S., Scott, I.C., and Bruneau, B.G. (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nature communications. 2:187
|
Targoff, K.L., Colombo, S., George, V., Schell, T., Kim, S.H., Solnica-Krezel, L., and Yelon, D. (2013) Nkx genes are essential for maintenance of ventricular identity. Development (Cambridge, England). 140(20):4203-4213
|
|
Thomas, N.A., Koudijs, M., van Eeden, F.J., Joyner, A.L., and Yelon, D. (2008) Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development (Cambridge, England). 135(22):3789-3799
|
Tobia, C., Chiodelli, P., Nicoli, S., Dell'era, P., Buraschi, S., Mitola, S., Foglia, E., van Loenen, P.B., Alewijnse, A.E., and Presta, M. (2012) Sphingosine-1-Phosphate Receptor-1 Controls Venous Endothelial Barrier Integrity in Zebrafish. Arterioscler. Thromb. Vasc. Biol.. 32(9):e104-116
|
Tong, X., Zu, Y., Li, Z., Li, W., Ying, L., Yang, J., Wang, X., He, S., Liu, D., Zhu, Z., Chen, J., Lin, S., and Zhang, B. (2014) Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nature communications. 5:3153
|
Trinh, L.A., Chong-Morrison, V., Gavriouchkina, D., Hochgreb-Hägele, T., Senanayake, U., Fraser, S.E., Sauka-Spengler, T. (2017) Biotagging of Specific Cell Populations in Zebrafish Reveals Gene Regulatory Logic Encoded in the Nuclear Transcriptome. Cell Reports. 19:425-440
|
Tsai, T.C., Lu, J.K., Choo, S.L., Yeh, S.Y., Tang, R.B., Lee, H.Y., and Lu, J.H. (2012) The paracrine effect of exogenous growth hormone alleviates dysmorphogenesis caused by tbx5 deficiency in zebrafish (Danio rerio) embryos. Journal of Biomedical Science. 19(1):63
|
|
Unal Eroglu, A., Mulligan, T.S., Zhang, L., White, D.T., Sengupta, S., Nie, C., Lu, N.Y., Qian, J., Xu, L., Pei, W., Burgess, S.M., Saxena, M.T., Mumm, J.S. (2018) Multiplexed CRISPR/Cas9 Targeting of Genes Implicated in Retinal Regeneration and Degeneration. Frontiers in cell and developmental biology. 6:88
|
van der Meer, D.L., Marques, I.J., Leito, J.T., Besser, J., Bakkers, J., Schoonheere, E., and Bagowski, C.P. (2006) Zebrafish cypher is important for somite formation and heart development. Developmental Biology. 299(2):356-372
|
Vandernoot, I., Haerlingen, B., Gillotay, P., Trubiroha, A., Janssens, V., Opitz, R., Costagliola, S. (2020) Enhanced canonical Wnt signaling during early zebrafish development perturbs the interaction of cardiac mesoderm and pharyngeal endoderm and causes thyroid specification defects. Thyroid : official journal of the American Thyroid Association. 31(3):420-438
|
Venturin, M., Carra, S., Gaudenzi, G., Brunelli, S., Gallo, G.R., Moncini, S., Cotelli, F., Riva, P. (2014) ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome. Journal of Medical Genetics. 51(7):436-43
|
Wang, D., Zhang, Y., Li, J., Dahlgren, R.A., Wang, X., Huang, H., Wang, H. (2020) Risk assessment of cardiotoxicity to zebrafish (Danio rerio) by environmental exposure to triclosan and its derivatives. Environmental pollution (Barking, Essex : 1987). 265:114995
|
Wang, H., He, J., Han, X., Wu, X., Ye, X., Lv, W., Zu, Y. (2023) hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley-Salih-Alorainy Syndrome. Biology. 12(7):
|
|
|
Wang, X., Chong, M., Wang, X., Wang, H., Zhang, J., Xu, H., Zhang, J., Liu, D. (2015) Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida. In vitro cellular & developmental biology. Animal. 51(3):211-7
|
Wang, X., Zhou, L., Jin, J., Yang, Y., Song, G., Shen, Y., Liu, H., Liu, M., Shi, C., and Qian, L. (2013) Knockdown of FABP3 Impairs Cardiac Development in Zebrafish through the Retinoic Acid Signaling Pathway. International Journal of Molecular Sciences. 14(7):13826-13841
|
Wang, Y., Zhong, T., Qian, L., Dong, Y., Jiang, Q., Tan, L., and Song, H. (2005) Wortmannin induces zebrafish cardia bifida through a mechanism independent of phosphoinositide 3-kinase and myosin light chain kinase. Biochemical and Biophysical Research Communications. 331(1):303-308
|
Wang, Y.X., Qian, L.X., Liu, D., Yao, L.L., Jiang, Q., Yu, Z., Gui, Y.H., Zhong, T.P., and Song, H.Y. (2007) Bone morphogenetic protein-2 acts upstream of myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. Cardiovascular research. 74(2):290-303
|
Wang, Y.X., Qian, L.X., Yu, Z., Jiang, Q., Dong, Y.X., Liu, X.F., Xin-Ying, Y., Zhong, T.P., and Song, H.Y. (2005) Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility. FEBS letters. 579(21):4843-4850
|
|
|
Weeks, O., Gao, X., Basu, S., Galdieri, J., Chen, K., Burns, C.G., Burns, C.E. (2024) Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovascular research. 120(13):1607-1621
|
Wei, Y., Meng, Y., Huang, Y., Liu, Z., Zhong, K., Ma, J., Zhang, W., Li, Y., Lu, H. (2020) Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. Chemosphere. 263:127860
|
|
Wen, B., Yuan, H., Liu, X., Wang, H., Chen, S., Chen, Z., de The, H., Zhou, J., Zhu, J. (2017) GATA5 SUMOylation is indispensable for zebrafish cardiac development. Biochimica et biophysica acta. 1861(7):1691-1701
|
Will, R.D., Eden, M., Just, S., Hansen, A., Eder, A., Frank, D., Kuhn, C., Seeger, T.S., Oehl, U., Wiemann, S., Korn, B., Koegl, M., Rottbauer, W., Eschenhagen, T., Katus, H.A., and Frey, N. (2010) Myomasp/LRRC39, a Heart- and Muscle-Specific Protein, Is a Novel Component of the Sarcomeric M-Band and Is Involved in Stretch Sensing. Circulation research. 107(10):1253-1264
|
Wilson, K.S., Baily, J., Tucker, C.S., Matrone, G., Vass, S., Moran, C., Chapman, K.E., Mullins, J.J., Kenyon, C., Hadoke, P.W., Denvir, M.A. (2015) Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart. Molecular and Cellular Endocrinology. 414:120-31
|
|
|
Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
|
Wu, C.C., Kruse, F., Vasudevarao, M.D., Junker, J.P., Zebrowski, D.C., Fischer, K., Noël, E.S., Grün, D., Berezikov, E., Engel, F.B., van Oudenaarden, A., Weidinger, G., Bakkers, J. (2016) Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Developmental Cell. 36(1):36-49
|
|
Wythe, J.D., Jurynec, M.J., Urness, L.D., Jones, C.A., Sabeh, M.K., Werdich, A.A., Sato, M., Yost, H.J., Grunwald, D.J., MacRae, C.A., and Li, D.Y. (2011) Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish. Disease models & mechanisms. 4(5):607-21
|
Xiao, C., Gao, L., Hou, Y., Xu, C., Chang, N., Wang, F., Hu, K., He, A., Luo, Y., Wang, J., Peng, J., Tang, F., Zhu, X., Xiong, J.W. (2016) Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nature communications. 7:13787
|
Xiao, Y., Gao, M., Gao, L., Zhao, Y., Hong, Q., Li, Z., Yao, J., Cheng, H., Zhou, R. (2016) Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports. 7(3):370-82
|
Xie, H., Fan, X., Tang, X., Wan, Y., Chen, F., Wang, X., Wang, Y., Li, Y., Tang, M., Liu, D., Jiang, Z., Liu, X., Yuan, W., Li, G., Ye, X., Zhou, J., Deng, Y., and Wu, X. (2013) The LIM protein fhlA is essential for heart chamber development in zebrafish embryos. Current Molecular Medicine. 13(6):979-92
|
Xu, D.J., Bu, J.W., Gu, S.Y., Xia, Y.M., Du, J.L., and Wang, Y.W. (2011) Celecoxib Impairs Heart Development via Inhibiting Cyclooxygenase-2 Activity in Zebrafish Embryos. Anesthesiology. 114(2):391-400
|
Xu, Q.H., Guan, P., Zhang, T., Lu, C., Li, G., Liu, J.X. (2018) Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation. Aquatic toxicology (Amsterdam, Netherlands). 200:102-113
|
Xue, C., Liu, X., Wen, B., Yang, R., Gao, S., Tao, J., Zhou, J. (2019) Zebrafish Vestigial Like Family Member 4b Is Required for Valvulogenesis Through Sequestration of Transcription Factor Myocyte Enhancer Factor 2c. Frontiers in cell and developmental biology. 7:277
|
Yan, L., Zhou, Y., Yu, S., Ji, G., Wang, L., Liu, W., and Gu, A. (2013) 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish. Experimental cell research. 319(19):2954-63
|
|
Yang, J., Wang, J., Zeng, Z., Qiao, L., Zhuang, L., Jiang, L., Wei, J., Ma, Q., Wu, M., Ye, S., Gao, Q., Ma, D., Huang, X. (2016) Smad4 is required for the development of cardiac and skeletal muscle in zebrafish. Differentiation; research in biological diversity. 92(4):161-168
|
Yang, R.M., Tao, J., Zhan, M., Yuan, H., Wang, H.H., Chen, S.J., Zhu, C., de Thé, H., Zhou, J., Guo, Y., Zhu, J. (2019) TAMM41 is required for heart valve differentiation via regulation of PINK-PARK2 dependent mitophagy. Cell death and differentiation. 26(11):2430-2446
|
|
|
Yelon, D., Ticho, B., Halpern, M.E., Ruvinsky, I., Ho, R.K., Silver, L.M., and Stainier, D.Y. (2000) The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development (Cambridge, England). 127(12):2573-2582
|
Yin, H.M., Yan, L.F., Liu, Q., Peng, Z., Zhang, C.Y., Xia, Y., Su, D., Gu, A.H., Zhou, Y. (2020) Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. Science advances. 6:eaay9466
|
|
Yue, Y., Jiang, M., He, L., Zhang, Z., Zhang, Q., Gu, C., Liu, M., Li, N., Zhao, Q. (2017) The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells.. The Journal of biological chemistry. 293(2):638-650
|
|
|
Zhang, B.L., Ye, Z., Xu, R.L., You, X.H., Qin, Y.W., Wu, H., Cao, J., Zhang, J.L., Zheng, X., and Zhao, X.X. (2014) Overexpression of G100S Mutation in PRKAG2 Causes Wolff-Parkinson-White Syndrome in Zebrafish. Clinical genetics. 86(3):287-91
|
Zhang, L., Yang, Y., Li, B., Scott, I.C., Lou, X. (2018) The DEAD box RNA helicase Ddx39ab is essential for myocyte and lens development in zebrafish. Development (Cambridge, England). 145(8)
|
Zhang, L., Zhong, T., Wang, Y., Jiang, Q., Song, H., and Gui, Y. (2006) TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid. The International journal of developmental biology. 50(1):55-61
|
|
|
Zhang, R., Han, P., Yang, H., Ouyang, K., Lee, D., Lin, Y.F., Ocorr, K., Kang, G., Chen, J., Stainier, D.Y., Yelon, D., and Chi, N.C. (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 498(7455):497-501
|
|
Zhang, Y., Wang, H., Zhang, J., Zheng, F., Jiang, N., Ma, D. (2015) Tissue factor pathway inhibitor-2 is critical in zebrafish cardiogenesis. Biochemical and Biophysical Research Communications. 456(3):827-33
|
|
Zhao, L., Zhao, X., Tian, T., Lu, Q., Skrbo-Larssen, N., Wu, D., Kuang, Z., Zheng, X., Han, Y., Yang, S., Zhang, C., and Meng, A. (2008) Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovascular research. 80(2):200-208
|
Zhao, X., Jiang, B., Hu, H., Mao, F., Mi, J., Li, Z., Liu, Q., Shao, C., Gong, Y. (2015) Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Human molecular genetics. 24(3):853-64
|
Zheng, N., Yan, J., Qian, W., Song, C., Zuo, Z., He, C. (2021) Comparison of developmental toxicity of different surface modified CdSe/ZnS QDs in zebrafish embryos. Journal of environmental sciences (China). 100:240-249
|
Zhou, C., Zhao, W., Zhang, S., Ma, J., Sultan, Y., Li, X. (2022) High-throughput transcriptome sequencing reveals the key stages of cardiovascular development in zebrafish embryos. BMC Genomics. 23:587
|
Zhou, Z., Zheng, L., Tang, C., Chen, Z., Zhu, R., Peng, X., Wu, X., Zhu, P. (2020) Identification of Potentially Relevant Genes for Excessive Exercise-Induced Pathological Cardiac Hypertrophy in Zebrafish. Frontiers in Physiology. 11:565307
|
Zhu, C., Guo, Z., Zhang, Y., Liu, M., Chen, B., Cao, K., Wu, Y., Yang, M., Yin, W., Zhao, H., Tai, H., Ou, Y., Yu, X., Liu, C., Li, S., Su, B., Feng, Y., Huang, S. (2019) Aplnra/b Sequentially Regulate Organ Left-Right Patterning via Distinct Mechanisms. International journal of biological sciences. 15:1225-1239
|
Zhu, D., Fang, Y., Gao, K., Shen, J., Zhong, T.P., Li, F. (2017) Vegfa Impacts Early Myocardium Development in Zebrafish. International Journal of Molecular Sciences. 18(2)
|
Zhu, L., Wang, C., Jiang, H., Zhang, L., Mao, L., Zhang, Y., Qi, S., Liu, X. (2022) Quizalofop-P-ethyl induced developmental toxicity and cardiotoxicity in early life stage of zebrafish (Danio rerio). Ecotoxicology and environmental safety. 238:113596
|
Zhu, P., Li, J., Yan, F., Islam, S., Lin, X., Xu, X. (2024) Allelic heterogeneity of TTNtv cardiomyopathy can be modeled in adult zebrafish. JCI insight. 9(7):
|
Znosko, W.A., Yu, S., Thomas, K., Molina, G.A., Li, C., Tsang, W., Dawid, I.B., Moon, A.M., and Tsang, M. (2010) Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Developmental Biology. 342(1):11-25
|
Ceci, M., Bonvissuto, D., Papetti, F., Silvestri, F., Sette, C., Catalani, E., Cervia, D., Gornati, R., Romano, N. (2024) RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Scientific Reports. 14:2569825698
|
Juan, T., Bellec, M., Cardoso, B., Athéa, H., Fukuda, N., Albu, M., Günther, S., Looso, M., Stainier, D.Y.R. (2024) Control of cardiac contractions using Cre-lox and degron strategies in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 121:e2309842121e2309842121
|
Kahsay, A., Dennhag, N., Liu, J.X., Nord, H., Rönnbäck, H., Thorell, A.E., von Hofsten, J., Pedrosa Domellöf, F. (2024) Obscurin Maintains Myofiber Identity in Extraocular Muscles. Investigative ophthalmology & visual science. 65:1919
|
Nunes Santos, L., Sousa Costa, Â.M., Nikolov, M., Carvalho, J.E., Coelho Sampaio, A., Stockdale, F.E., Wang, G.F., Andrade Castillo, H., Bortoletto Grizante, M., Dudczig, S., Vasconcelos, M., Rosenthal, N., Jusuf, P.R., Nim, H.T., de Oliveira, P., Guimarães de Freitas Matos, T., Nikovits, W., Tambones, I.L., Figueira, A.C.M., Schubert, M., Ramialison, M., Xavier-Neto, J. (2024) Unraveling the evolutionary origin of the complex Nuclear Receptor Element (cNRE), a cis-regulatory module required for preferential expression in the atrial chamber. Communications biology. 7:371371
|
|
Weeks, O., Gao, X., Basu, S., Galdieri, J., Chen, K., Burns, C.G., Burns, C.E. (2024) Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovascular research. 120(13):1607-1621
|
Zhu, P., Li, J., Yan, F., Islam, S., Lin, X., Xu, X. (2024) Allelic heterogeneity of TTNtv cardiomyopathy can be modeled in adult zebrafish. JCI insight. 9(7):
|
|
Cai, W., Wang, Y., Luo, Y., Gao, L., Zhang, J., Jiang, Z., Fan, X., Li, F., Xie, Y., Wu, X., Li, Y., Yuan, W. (2023) asb5a/asb5b Double Knockout Affects Zebrafish Cardiac Contractile Function. International Journal of Molecular Sciences. 24(22):
|
DeMoya, R.A., Forman-Rubinsky, R.E., Fontaine, D., Shin, J., Watkins, S.C., Lo, C.W., Tsang, M. (2023) Sin3a associated protein 130 kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. Frontiers in cell and developmental biology. 11:11971091197109
|
Friedman, C.E., Cheetham, S.W., Negi, S., Mills, R.J., Ogawa, M., Redd, M.A., Chiu, H.S., Shen, S., Sun, Y., Mizikovsky, D., Bouveret, R., Chen, X., Voges, H.K., Paterson, S., De Angelis, J.E., Andersen, S.B., Cao, Y., Wu, Y., Jafrani, Y.M.A., Yoon, S., Faulkner, G.J., Smith, K.A., Porrello, E., Harvey, R.P., Hogan, B.M., Nguyen, Q., Zeng, J., Kikuchi, K., Hudson, J.E., Palpant, N.J. (2023) HOPX-associated molecular programs control cardiomyocyte cell states underpinning cardiac structure and function. Developmental Cell. 59(1):91-107.e6
|
Gafranek, J.T., D'Aniello, E., Ravisankar, P., Thakkar, K., Vagnozzi, R.J., Lim, H.W., Salomonis, N., Waxman, J.S. (2023) Sinus venosus adaptation models prolonged cardiovascular disease and reveals insights into evolutionary transitions of the vertebrate heart. Nature communications. 14:55095509
|
Li, L., Tai, Z., Liu, W., Luo, Y., Wu, Y., Lin, S., Liu, M., Gao, B., Liu, J.X. (2023) Copper overload impairs hematopoietic stem and progenitor cell proliferation via prompting HSF1/SP1 aggregation and the subsequently downregulating FOXM1-Cytoskeleton axis. iScience. 26:106406106406
|
|
|
Singh Angom, R., Wang, Y., Wang, E., Dutta, S., Mukhopadhyay, D. (2023) Conditional, Tissue-Specific CRISPR/Cas9 Vector System in Zebrafish Reveals the Role of Nrp1b in Heart Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology. 43(10):1921-1934
|
Wang, H., He, J., Han, X., Wu, X., Ye, X., Lv, W., Zu, Y. (2023) hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley-Salih-Alorainy Syndrome. Biology. 12(7):
|
Davide, B., Marcello, C., Carol, L., Veronica, V., Roberta, B., Davide, C., Claudio, S., Gornati, R., Nicla, R. (2022) Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model?. Biochimica et biophysica acta. Molecular basis of disease. 1868(10):166471
|
|
Hesaraki, M., Bora, U., Pahlavan, S., Salehi, N., Mousavi, S.A., Barekat, M., Rasouli, S.J., Baharvand, H., Ozhan, G., Totonchi, M. (2022) A Novel Missense Variant in Actin Binding Domain of MYH7 Is Associated With Left Ventricular Noncompaction. Frontiers in cardiovascular medicine. 9:839862
|
Huang, Y., Wang, W.F., Huang, C.X., Li, X.H., Liu, H., Wang, H.L. (2022) miR-731 modulates the zebrafish heart morphogenesis via targeting Calcineurin/Nfatc3a pathway. Biochimica et biophysica acta. General subjects. 1866(6):130133
|
Jin, M., Zhang, H., Xu, B., Li, Y., Qin, H., Yu, S., He, J. (2022) Jag2b-Notch3/1b-mediated neuron-to-glia crosstalk controls retinal gliogenesis. EMBO reports. 23(10):e54922
|
Kayvanpour, E., Wisdom, M., Lackner, M.K., Sedaghat-Hamedani, F., Boeckel, J.N., Müller, M., Eghbalian, R., Dudek, J., Doroudgar, S., Maack, C., Frey, N., Meder, B. (2022) VARS2 Depletion Leads to Activation of the Integrated Stress Response and Disruptions in Mitochondrial Fatty Acid Oxidation. International Journal of Molecular Sciences. 23(13)
|
Kent, M.E., Hu, B., Eggleston, T.M., Squires, R.S., Zimmerman, K.A., Weiss, R.M., Roghair, R.D., Lin, F., Cornell, R.A., Haskell, S.E. (2022) Hypersensitivity of zebrafish htr2b mutant embryos to sertraline indicates a role for serotonin signaling in cardiac development. Journal of Cardiovascular Pharmacology. 80(2):261-269
|
Lv, F., Ge, X., Qian, P., Lu, X., Liu, D., Chen, C. (2022) Neuron navigator 3 (NAV3) is required for heart development in zebrafish. Fish physiology and biochemistry. 48(1):173-183
|
Ma, J., Gu, Y., Liu, J., Song, J., Zhou, T., Jiang, M., Wen, Y., Guo, X., Zhou, Z., Sha, J., He, J., Hu, Z., Luo, L., Liu, M. (2022) Functional screening of congenital heart disease risk loci identifies 5 genes essential for heart development in zebrafish. Cellular and molecular life sciences : CMLS. 80:1919
|
|
Zhou, C., Zhao, W., Zhang, S., Ma, J., Sultan, Y., Li, X. (2022) High-throughput transcriptome sequencing reveals the key stages of cardiovascular development in zebrafish embryos. BMC Genomics. 23:587
|
Zhu, L., Wang, C., Jiang, H., Zhang, L., Mao, L., Zhang, Y., Qi, S., Liu, X. (2022) Quizalofop-P-ethyl induced developmental toxicity and cardiotoxicity in early life stage of zebrafish (Danio rerio). Ecotoxicology and environmental safety. 238:113596
|
Bu, H., Ding, Y., Li, J., Zhu, P., Shih, Y.H., Wang, M., Zhang, Y., Lin, X., Xu, X. (2021) Inhibition of mTOR or MAPK ameliorates vmhcl/myh7 cardiomyopathy in zebrafish. JCI insight. 6(24):
|
Bühler, A., Gahr, B.M., Park, D.D., Bertozzi, A., Boos, A., Dalvoy, M., Pott, A., Oswald, F., Kovall, R.A., Kühn, B., Weidinger, G., Rottbauer, W., Just, S. (2021) Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish. PLoS Genetics. 17:e1009890
|
|
Chen, Z., Zhou, Z., Peng, X., Sun, C., Yang, D., Li, C., Zhu, R., Zhang, P., Zheng, L., Tang, C. (2021) Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart. The journal of physiological sciences : JPS. 71:33
|
Choe, H., Kim, M.J., Jeon, H.J., Kim, K., Kim, C., Park, J., Shin, J., Lee, S.R., Lee, S.E. (2021) Acute toxicity of the insecticide EPN upon zebrafish (Danio rerio) embryos and its related adverse effects: Verification of abnormal cardiac development and seizure-like events. Ecotoxicology and environmental safety. 222:112544
|
Derrick, C.J., Sánchez-Posada, J., Hussein, F., Tessadori, F., Pollitt, E.J.G., Savage, A.M., Wilkinson, R.N., Chico, T.J., van Eeden, F.J., Bakkers, J., Noël, E.S. (2021) Asymmetric Hapln1a drives regionalised cardiac ECM expansion and promotes heart morphogenesis in zebrafish development. Cardiovascular research. 118(1):226-240
|
Facchinello, N., Laquatra, C., Locatello, L., Beffagna, G., Brañas Casas, R., Fornetto, C., Dinarello, A., Martorano, L., Vettori, A., Risato, G., Celeghin, R., Meneghetti, G., Santoro, M.M., Delahodde, A., Vanzi, F., Rasola, A., Dalla Valle, L., Rasotto, M.B., Lodi, T., Baruffini, E., Argenton, F., Tiso, N. (2021) Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death & Disease. 12:100
|
Hsu, P.J., Wang, H.D., Tseng, Y.C., Pan, S.W., Sampurna, B.P., Jong, Y.J., Yuh, C.H. (2021) L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish. Journal of Biomedical Science. 28:8
|
Hu, M., Liu, P., Lu, S., Wang, Z., Lyu, Z., Liu, H., Sun, Y., Liu, F., Tian, J. (2021) Myocardial protective effect and transcriptome profiling of Naoxintong on cardiomyopathy in zebrafish. Chinese Medicine. 16:119
|
Kim, M., Lu, L., Dvornikov, A.V., Ma, X., Ding, Y., Zhu, P., Olson, T.M., Lin, X., Xu, X. (2021) TFEB Overexpression, Not mTOR Inhibition, Ameliorates RagCS75Y Cardiomyopathy. International Journal of Molecular Sciences. 22(11):
|
Li, J., Liu, F., Lv, Y., Sun, K., Zhao, Y., Reilly, J., Zhang, Y., Tu, J., Yu, S., Liu, X., Qin, Y., Huang, Y., Gao, P., Jia, D., Chen, X., Han, Y., Shu, X., Luo, D., Tang, Z., Liu, M. (2021) Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic acids research. 49(4):2027-2043
|
Ma, J., Huang, Y., Jiang, P., Liu, Z., Luo, Q., Zhong, K., Yuan, W., Meng, Y., Lu, H. (2021) Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. Aquatic toxicology (Amsterdam, Netherlands). 237:105870
|
Ma, J., Huang, Y., Peng, Y., Xu, Z., Wang, Z., Chen, X., Xie, S., Jiang, P., Zhong, K., Lu, H. (2021) Bifenazate exposure induces cardiotoxicity in zebrafish embryos. Environmental pollution (Barking, Essex : 1987). 274:116539
|
Meng, Y., Zhong, K., Chen, S., Huang, Y., Wei, Y., Wu, J., Liu, J., Xu, Z., Guo, J., Liu, F., Lu, H. (2021) Cardiac toxicity assessment of pendimethalin in zebrafish embryos. Ecotoxicology and environmental safety. 222:112514
|
|
|
|
Zheng, N., Yan, J., Qian, W., Song, C., Zuo, Z., He, C. (2021) Comparison of developmental toxicity of different surface modified CdSe/ZnS QDs in zebrafish embryos. Journal of environmental sciences (China). 100:240-249
|
|
Budine, T.E., de Sena-Tomás, C., Williams, M.L.K., Sepich, D.S., Targoff, K.L., Solnica-Kreze, L. (2020) Gon4l/Udu Regulates Cardiomyocyte Proliferation and Maintenance of Ventricular Chamber Identity During Zebrafish Development. Developmental Biology. 462(2):223-234
|
Chu, L., Yin, H., Gao, L., Gao, L., Xia, Y., Zhang, C., Chen, Y., Liu, T., Huang, J., Boheler, K.R., Zhou, Y., Yang, H.T. (2020) Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. Science China. Life sciences. 64(2):255-268
|
Gou, D., Zhou, J., Song, Q., Wang, Z., Bai, X., Zhang, Y., Zuo, M., Wang, F., Chen, A., Yousaf, M., Yang, Z., Peng, H., Li, K., Xie, W., Tang, J., Yao, Y., Han, M., Ke, T., Chen, Q., Xu, C., Wang, Q. (2020) Mog1 knockout causes cardiac hypertrophy and heart failure by downregulating tbx5-cryab-hspb2 signaling in zebrafish. Acta physiologica (Oxford, England). 231(3):e13567
|
Han, C.R., Wang, H., Hoffmann, V., Zerfas, P., Kruhlak, M., Cheng, S.Y. (2020) Thyroid hormone receptor α mutations cause heart defects in zebrafish. Thyroid : official journal of the American Thyroid Association. 31(2):315-326
|
Holowiecki, A., Linstrum, K., Ravisankar, P., Chetal, K., Salomonis, N., Waxman, J.S. (2020) Pbx4 limits heart size and fosters arch artery formation through partitioning second heart field progenitors and restricting proliferation. Development (Cambridge, England). 147(5):
|
Huang, Y., Chen, Z., Meng, Y., Wei, Y., Xu, Z., Ma, J., Zhong, K., Cao, Z., Liao, X., Lu, H. (2020) Famoxadone-cymoxanil induced cardiotoxicity in zebrafish embryos. Ecotoxicology and environmental safety. 205:111339
|
Huang, Y., Ma, J., Meng, Y., Wei, Y., Xie, S., Jiang, P., Wang, Z., Chen, X., Liu, Z., Zhong, K., Cao, Z., Liao, X., Xiao, J., Lu, H. (2020) Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. Environmental pollution (Barking, Essex : 1987). 265:114775
|
Kim, C., Choe, H., Park, J., Kim, G., Kim, K., Jeon, H.J., Moon, J.K., Kim, M.J., Lee, S.E. (2020) Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines. Environmental pollution (Barking, Essex : 1987). 270:116087
|
Kim, Y.C., Lee, S.R., Jeon, H.J., Kim, K., Kim, M.J., Choi, S.D., Lee, S.E. (2020) Acute toxicities of fluorene, fluorene-1-carboxylic acid, and fluorene-9-carboxylic acid on zebrafish embryos (Danio rerio): Molecular mechanisms of developmental toxicities of fluorene-1-carboxylic acid. Chemosphere. 260:127622
|
|
Li, M., Yao, L., Chen, H., Ni, X., Xu, Y., Dong, W., Fang, M., Chen, D., Aowuliji, ., Xu, L., Zhao, B., Deng, J., Kwok, K.W., Yang, J., Dong, W. (2020) Chiral toxicity of muscone to embryonic zebrafish heart. Aquatic toxicology (Amsterdam, Netherlands). 222:105451
|
|
Meng, Y., Zhong, K., Xiao, J., Huang, Y., Wei, Y., Tang, L., Chen, S., Wu, J., Ma, J., Cao, Z., Liao, X., Lu, H. (2020) Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. Chemosphere. 255:126889
|
|
|
Sam, J., Mercer, E.J., Torregroza, I., Banks, K.M., Evans, T. (2020) Specificity, redundancy and dosage thresholds among gata4/5/6 genes during zebrafish cardiogenesis. Biology Open. 9(6):
|
Santos-Ledo, A., Washer, S., Dhanaseelan, T., Eley, L., Alqatani, A., Chrystal, P.W., Papoutsi, T., Henderson, D.J., Chaudhry, B. (2020) Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genetics. 16:e1008782
|
|
Shi, X., Zhang, Y., Chen, R., Gong, Y., Zhang, M., Guan, R., Rotstein, O.D., Liu, X., Wen, X.Y. (2020) ndufa7 plays a critical role in cardiac hypertrophy. Journal of Cellular and Molecular Medicine. 24(22):13151-13162
|
Shi, X., Zhang, Y., Gong, Y., Chen, M., Brand-Arzamendi, K., Liu, X., Wen, X.Y. (2020) Zebrafish hhatla is involved in cardiac hypertrophy. Journal of Cellular Physiology. 236(5):3700-3709
|
Sidhwani, P., Leerberg, D.M., Boezio, G.L.M., Capasso, T.L., Yang, H., Chi, N.C., Roman, B.L., Stainier, D.Y.R., Yelon, D. (2020) Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development (Cambridge, England). 147(12):
|
Sun, Y., Cao, Y., Tong, L., Tao, F., Wang, X., Wu, H., Wang, M. (2020) Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. Chemosphere. 251:126418
|
Vandernoot, I., Haerlingen, B., Gillotay, P., Trubiroha, A., Janssens, V., Opitz, R., Costagliola, S. (2020) Enhanced canonical Wnt signaling during early zebrafish development perturbs the interaction of cardiac mesoderm and pharyngeal endoderm and causes thyroid specification defects. Thyroid : official journal of the American Thyroid Association. 31(3):420-438
|
Wang, D., Zhang, Y., Li, J., Dahlgren, R.A., Wang, X., Huang, H., Wang, H. (2020) Risk assessment of cardiotoxicity to zebrafish (Danio rerio) by environmental exposure to triclosan and its derivatives. Environmental pollution (Barking, Essex : 1987). 265:114995
|
Wei, Y., Meng, Y., Huang, Y., Liu, Z., Zhong, K., Ma, J., Zhang, W., Li, Y., Lu, H. (2020) Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. Chemosphere. 263:127860
|
|
Yin, H.M., Yan, L.F., Liu, Q., Peng, Z., Zhang, C.Y., Xia, Y., Su, D., Gu, A.H., Zhou, Y. (2020) Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. Science advances. 6:eaay9466
|
Zhou, Z., Zheng, L., Tang, C., Chen, Z., Zhu, R., Peng, X., Wu, X., Zhu, P. (2020) Identification of Potentially Relevant Genes for Excessive Exercise-Induced Pathological Cardiac Hypertrophy in Zebrafish. Frontiers in Physiology. 11:565307
|
Burczyk, M.S., Burkhalter, M.D., Tena, T.C., Grisanti, L.A., Kauk, M., Matysik, S., Donow, C., Kustermann, M., Rothe, M., Cui, Y., Raad, F., Laue, S., Moretti, A., Zimmermann, W.H., Wess, J., Kühl, M., Hoffmann, C., Tilley, D.G., Philipp, M. (2019) Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI insight. 4(20):
|
Chrispijn, N.D., Elurbe, D.M., Mickoleit, M., Aben, M., de Bakker, D.E.M., Andralojc, K.M., Huisken, J., Bakkers, J., Kamminga, L.M. (2019) Loss of the Polycomb group protein Rnf2 results in derepression of tbx-transcription factors and defects in embryonic and cardiac development. Scientific Reports. 9:4327
|
Ding, Y., Dvornikov, A.V., Ma, X., Zhang, H., Wang, Y., Lowerison, M., Packard, R.R., Wang, L., Chen, J., Zhang, Y., Hsiai, T., Lin, X., Xu, X. (2019) Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Disease models & mechanisms. 12(10):
|
Dohn, T.E., Ravisankar, P., Tirera, F.T., Martin, K.E., Gafranek, J.T., Duong, T.B., VanDyke, T.L., Touvron, M., Barske, L.A., Crump, J.G., Waxman, J.S. (2019) Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genetics. 15:e1007962
|
Dvornikov, A.V., Wang, M., Yang, J., Zhu, P., Le, T., Lin, X., Cao, H., Xu, X. (2019) Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. Journal of Molecular and Cellular Cardiology. 133:199-208
|
Fouchécourt, S., Picolo, F., Elis, S., Lécureuil, C., Thélie, A., Govoroun, M., Brégeon, M., Papillier, P., Lareyre, J.J., Monget, P. (2019) An evolutionary approach to recover genes predominantly expressed in the testes of the zebrafish, chicken and mouse. BMC Evolutionary Biology. 19:137
|
|
Honkoop, H., de Bakker, D.E., Aharonov, A., Kruse, F., Shakked, A., Nguyen, P.D., de Heus, C., Garric, L., Muraro, M.J., Shoffner, A., Tessadori, F., Peterson, J.C., Noort, W., Bertozzi, A., Weidinger, G., Posthuma, G., Grun, D., van der Laarse, W.J., Klumperman, J., Jaspers, R.T., Poss, K.D., van Oudenaarden, A., Tzahor, E., Bakkers, J. (2019) Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLIFE. 8:
|
Lan, Y., Pan, H., Li, C., Banks, K.M., Sam, J., Ding, B., Elemento, O., Goll, M.G., Evans, T. (2019) TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Reports. 26:720-732.e4
|
Liu, L., Fei, F., Zhang, R., Wu, F., Yang, Q., Wang, F., Sun, S., Zhao, H., Li, Q., Wang, L., Wang, Y., Gui, Y., Wang, X. (2019) Combinatorial genetic replenishments in myocardial and outflow tract tissues restore heart function in tnnt2 mutant zebrafish. Biology Open. 8(12):
|
Sharma, D., Sehgal, P., Mathew, S., Vellarikkal, S.K., Singh, A.R., Kapoor, S., Jayarajan, R., Scaria, V., Sivasubbu, S. (2019) A genome-wide map of circular RNAs in adult zebrafish. Scientific Reports. 9:3432
|
|
Xue, C., Liu, X., Wen, B., Yang, R., Gao, S., Tao, J., Zhou, J. (2019) Zebrafish Vestigial Like Family Member 4b Is Required for Valvulogenesis Through Sequestration of Transcription Factor Myocyte Enhancer Factor 2c. Frontiers in cell and developmental biology. 7:277
|
Yang, R.M., Tao, J., Zhan, M., Yuan, H., Wang, H.H., Chen, S.J., Zhu, C., de Thé, H., Zhou, J., Guo, Y., Zhu, J. (2019) TAMM41 is required for heart valve differentiation via regulation of PINK-PARK2 dependent mitophagy. Cell death and differentiation. 26(11):2430-2446
|
Zhu, C., Guo, Z., Zhang, Y., Liu, M., Chen, B., Cao, K., Wu, Y., Yang, M., Yin, W., Zhao, H., Tai, H., Ou, Y., Yu, X., Liu, C., Li, S., Su, B., Feng, Y., Huang, S. (2019) Aplnra/b Sequentially Regulate Organ Left-Right Patterning via Distinct Mechanisms. International journal of biological sciences. 15:1225-1239
|
Bhakta, M., Padanad, M.S., Harris, J.P., Lubczyk, C., Amatruda, J.F., Munshi, N.V. (2018) pouC regulates expression of bmp4 during atrioventricular canal formation in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 248(2):173-188
|
|
Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. (2018) Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 33(1):696-710
|
|
Dimitriadi, A., Beis, D., Arvanitidis, C., Adriaens, D., Koumoundouros, G. (2018) Developmental temperature has persistent, sexually dimorphic effects on zebrafish cardiac anatomy. Scientific Reports. 8:8125
|
Ferese, R., Bonetti, M., Consoli, F., Guida, V., Sarkozy, A., Lepri, F.R., Versacci, P., Gambardella, S., Calcagni, G., Margiotti, K., Sparascio, F.P., Hozhabri, H., Mazza, T., Digilio, M.C., Dallapiccola, B., Tartaglia, M., Marino, B., Hertog, J.D., De Luca, A. (2018) Heterozygous missense mutations in NFATC1 are associated with atrioventricular septal defect. Human Mutation. 39(10):1428-1441
|
|
Hsieh, F.C., Lu, Y.F., Liau, I., Chen, C.C., Cheng, C.M., Hsiao, C.D., Hwang, S.L. (2018) Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Scientific Reports. 8:7856
|
|
Paone, C., Rudeck, S., Etard, C., Strähle, U., Rottbauer, W., Just, S. (2018) Loss of zebrafish Smyd1a interferes with myofibrillar integrity without triggering the misfolded myosin response. Biochemical and Biophysical Research Communications. 496(2):339-345
|
|
Unal Eroglu, A., Mulligan, T.S., Zhang, L., White, D.T., Sengupta, S., Nie, C., Lu, N.Y., Qian, J., Xu, L., Pei, W., Burgess, S.M., Saxena, M.T., Mumm, J.S. (2018) Multiplexed CRISPR/Cas9 Targeting of Genes Implicated in Retinal Regeneration and Degeneration. Frontiers in cell and developmental biology. 6:88
|
|
Xu, Q.H., Guan, P., Zhang, T., Lu, C., Li, G., Liu, J.X. (2018) Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation. Aquatic toxicology (Amsterdam, Netherlands). 200:102-113
|
Zhang, L., Yang, Y., Li, B., Scott, I.C., Lou, X. (2018) The DEAD box RNA helicase Ddx39ab is essential for myocyte and lens development in zebrafish. Development (Cambridge, England). 145(8)
|
Duong, T.B., Ravisankar, P., Song, Y.C., Gafranek, J.T., Rydeen, A.B., Dohn, T.E., Barske, L.A., Crump, J.G., Waxman, J.S. (2017) Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Developmental Biology. 434(1):7-14
|
El-Rass, S., Eisa-Beygi, S., Khong, E., Brand-Arzamendi, K., Mauro, A., Zhang, H., Clark, K.J., Ekker, S.C., Wen, X.Y. (2017) Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly.. Biology Open. 6(3):348-357
|
Huang, M., Jiao, J., Wang, J., Xia, Z., Zhang, Y. (2017) Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. Environmental pollution (Barking, Essex : 1987). 234:656-666
|
Lei, L., Yan, S.Y., Yang, R., Chen, J.Y., Li, Y., Bu, Y., Chang, N., Zhou, Q., Zhu, X., Li, C.Y., Xiong, J.W. (2017) Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic acids research. 45(6):3422-3436
|
Münch, J., Grivas, D., González-Rajal, Á., Torregrosa-Carrión, R., de la Pompa, J.L. (2017) Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart.. Development (Cambridge, England). 144(8):1425-1440
|
Nagata, Y., Yamagishi, M., Konno, T., Nakanishi, C., Asano, Y., Ito, S., Nakajima, Y., Seguchi, O., Fujino, N., Kawashiri, M.A., Takashima, S., Kitakaze, M., Hayashi, K. (2017) Heat Failure Phenotypes Induced by Knockdown of DAPIT in Zebrafish: A New Insight into Mechanism of Dilated Cardiomyopathy. Scientific Reports. 7:17417
|
Ocaña, O.H., Coskun, H., Minguillón, C., Murawala, P., Tanaka, E.M., Galcerán, J., Muñoz-Chápuli, R., Nieto, M.A. (2017) A right-handed signalling pathway drives heart looping in vertebrates. Nature. 549:86-90
|
Pradhan, A., Zeng, X.I., Sidhwani, P., Marques, S.R., George, V., Targoff, K.L., Chi, N.C., Yelon, D. (2017) FGF signaling enforces cardiac chamber identity in the developing ventricle. Development (Cambridge, England). 144(7):1328-1338
|
Razaghi, B., Steele, S.L., Prykhozhij, S.V., Stoyek, M.R., Hill, J.A., Cooper, M.D., McDonald, L., Lin, W., Daugaard, M., Crapoulet, N., Chacko, S., Lewis, S., Scott, I.C., Sorensen, P.H.B., Berman, J.N. (2017) hace1 influences zebrafish cardiac development via ROS-dependent mechanisms. Developmental Dynamics : an official publication of the American Association of Anatomists. 247(2):289-303
|
|
Trinh, L.A., Chong-Morrison, V., Gavriouchkina, D., Hochgreb-Hägele, T., Senanayake, U., Fraser, S.E., Sauka-Spengler, T. (2017) Biotagging of Specific Cell Populations in Zebrafish Reveals Gene Regulatory Logic Encoded in the Nuclear Transcriptome. Cell Reports. 19:425-440
|
Wen, B., Yuan, H., Liu, X., Wang, H., Chen, S., Chen, Z., de The, H., Zhou, J., Zhu, J. (2017) GATA5 SUMOylation is indispensable for zebrafish cardiac development. Biochimica et biophysica acta. 1861(7):1691-1701
|
|
Yue, Y., Jiang, M., He, L., Zhang, Z., Zhang, Q., Gu, C., Liu, M., Li, N., Zhao, Q. (2017) The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells.. The Journal of biological chemistry. 293(2):638-650
|
Zhu, D., Fang, Y., Gao, K., Shen, J., Zhong, T.P., Li, F. (2017) Vegfa Impacts Early Myocardium Development in Zebrafish. International Journal of Molecular Sciences. 18(2)
|
Bühler, A., Kustermann, M., Bummer, T., Rottbauer, W., Sandri, M., Just, S. (2016) Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. International Journal of Molecular Sciences. 17(2)
|
Cheng, F., Miao, L., Wu, Q., Gong, X., Xiong, J., Zhang, J. (2016) Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish. Development (Cambridge, England). 143(19):3522-3531
|
Gomes, R.S., Skroblin, P., Munster, A.B., Tomlins, H., Langley, S.R., Zampetaki, A., Yin, X., Wardle, F., Mayr, M. (2016) "Young at heart": Regenerative potential linked to immature cardiac phenotypes. Journal of Molecular and Cellular Cardiology. 92:105-8
|
Khatri, D., Zizioli, D., Tiso, N., Facchinello, N., Vezzoli, S., Gianoncelli, A., Memo, M., Monti, E., Borsani, G., Finazzi, D. (2016) Down-regulation of coasy, the gene associated with NBIA-VI, reduces Bmp signaling, perturbs dorso-ventral patterning and alters neuronal development in zebrafish. Scientific Reports. 6:37660
|
|
Li, X., Gao, A., Wang, Y., Chen, M., Peng, J., Yan, H., Zhao, X., Feng, X., Chen, D. (2016) Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae. Biology Open. 5(8):1128-33
|
McIntyre, J., Edmunds, R., Redig, M., Mudrock, E., Davis, J., Incardona, J.P., Stark, J.D., Scholz, N. (2016) Confirmation of stormwater bioretention treatment effectiveness using molecular indicators of cardiovascular toxicity in developing fish. Environmental science & technology. 50(3):1561-9
|
Powell, R., Bubenshchikova, E., Fukuyo, Y., Hsu, C., Lakiza, O., Nomura, H., Renfrew, E., Garrity, D., Obara, T. (2016) Wtip is required for proepicardial organ specification and cardiac left/right asymmetry in zebrafish. Molecular Medicine Reports. 14(3):2665-78
|
|
|
San, B., Chrispijn, N.D., Wittkopp, N., van Heeringen, S.J., Lagendijk, A.K., Aben, M., Bakkers, J., Ketting, R.F., Kamminga, L.M. (2016) Normal formation of a vertebrate body plan and loss of tissue maintenance in the absence of ezh2. Scientific Reports. 6:24658
|
Sasagawa, S., Nishimura, Y., Okabe, S., Murakami, S., Ashikawa, Y., Yuge, M., Kawaguchi, K., Kawase, R., Okamoto, R., Ito, M., Tanaka, T. (2016) Downregulation of GSTK1 Is a Common Mechanism Underlying Hypertrophic Cardiomyopathy. Frontiers in pharmacology. 7:162
|
Siddique, B.S., Kinoshita, S., Wongkarangkana, C., Asakawa, S., Watabe, S. (2016) Evolution and Distribution of Teleost myomiRNAs: Functionally Diversified myomiRs in Teleosts. Marine biotechnology (New York, N.Y.). 18:436-47
|
Singh, A.R., Sivadas, A., Sabharwal, A., Vellarikal, S.K., Jayarajan, R., Verma, A., Kapoor, S., Joshi, A., Scaria, V., Sivasubbu, S. (2016) Chamber Specific Gene Expression Landscape of the Zebrafish Heart. PLoS One. 11:e0147823
|
Wu, C.C., Kruse, F., Vasudevarao, M.D., Junker, J.P., Zebrowski, D.C., Fischer, K., Noël, E.S., Grün, D., Berezikov, E., Engel, F.B., van Oudenaarden, A., Weidinger, G., Bakkers, J. (2016) Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Developmental Cell. 36(1):36-49
|
Xiao, C., Gao, L., Hou, Y., Xu, C., Chang, N., Wang, F., Hu, K., He, A., Luo, Y., Wang, J., Peng, J., Tang, F., Zhu, X., Xiong, J.W. (2016) Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nature communications. 7:13787
|
Xiao, Y., Gao, M., Gao, L., Zhao, Y., Hong, Q., Li, Z., Yao, J., Cheng, H., Zhou, R. (2016) Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports. 7(3):370-82
|
|
Yang, J., Wang, J., Zeng, Z., Qiao, L., Zhuang, L., Jiang, L., Wei, J., Ma, Q., Wu, M., Ye, S., Gao, Q., Ma, D., Huang, X. (2016) Smad4 is required for the development of cardiac and skeletal muscle in zebrafish. Differentiation; research in biological diversity. 92(4):161-168
|
|
Campbell, C., Su, T., Lau, R.P., Shah, A., Laurie, P.C., Avalos, B., Aggio, J., Harris, E., Traver, D., Stachura, D.L. (2015) Zebrafish Embryonic Stromal Trunk (ZEST) cells support hematopoietic stem and progenitor cell (HSPC) proliferation, survival, and differentiation. Experimental hematology. 43(12):1047-61
|
|
Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
|
|
Hisano, Y., Inoue, A., Okudaira, M., Taimatsu, K., Matsumoto, H., Kotani, H., Ohga, R., Aoki, J., Kawahara, A. (2015) Maternal and Zygotic Sphingosine Kinase 2 are Indispensable for Cardiac Development in Zebrafish. The Journal of biological chemistry. 290(24):14841-51
|
Kao, R.M., Rurik, J.G., Farr, G.H., Dong, X.R., Majesky, M.W., Maves, L. (2015) Pbx4 is Required for the Temporal Onset of Zebrafish Myocardial Differentiation. Journal of developmental biology. 3:93-111
|
Kim, J.D., Kim, E., Koun, S., Ham, H.J., Rhee, M., Kim, M.J., Huh, T.L. (2015) Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis. Molecules and cells. 38(6):580-6
|
Rydeen, A., Voisin, N., D'Aniello, E., Ravisankar, P., Devignes, C.S., Waxman, J.S. (2015) Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling. Developmental Biology. 405(1):47-55
|
Shih, Y.H., Zhang, Y., Ding, Y., Ross, C.A., Li, H., Olson, T.M., Xu, X. (2015) Cardiac Transcriptome and Dilated Cardiomyopathy Genes in Zebrafish. Circulation. Cardiovascular genetics. 8(2):261-9
|
Wang, X., Chong, M., Wang, X., Wang, H., Zhang, J., Xu, H., Zhang, J., Liu, D. (2015) Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida. In vitro cellular & developmental biology. Animal. 51(3):211-7
|
Wilson, K.S., Baily, J., Tucker, C.S., Matrone, G., Vass, S., Moran, C., Chapman, K.E., Mullins, J.J., Kenyon, C., Hadoke, P.W., Denvir, M.A. (2015) Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart. Molecular and Cellular Endocrinology. 414:120-31
|
|
Zhang, Y., Wang, H., Zhang, J., Zheng, F., Jiang, N., Ma, D. (2015) Tissue factor pathway inhibitor-2 is critical in zebrafish cardiogenesis. Biochemical and Biophysical Research Communications. 456(3):827-33
|
Zhao, X., Jiang, B., Hu, H., Mao, F., Mi, J., Li, Z., Liu, Q., Shao, C., Gong, Y. (2015) Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Human molecular genetics. 24(3):853-64
|
Bonetti, M., Paardekooper Overman, J., Tessadori, F., Noël, E., Bakkers, J., den Hertog, J. (2014) Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development (Cambridge, England). 141:1961-70
|
Dickover, M., Hegarty, J.M., Ly, K., Lopez, D., Yang, H., Zhang, R., Tedeschi, N., Hsiai, T.K., Chi, N.C. (2014) The atypical Rho GTPase, RhoU, regulates cell-adhesion molecules during cardiac morphogenesis. Developmental Biology. 389:182-91
|
Hu, X., Gan, S., Xie, G., Li, L., Chen, C., Ding, X., Han, M., Xiang, S., Zhang, J. (2014) KCTD10 is critical for heart and blood vessel development of zebrafish. Acta biochimica et biophysica Sinica. 46:377-86
|
Junker, J.P., Noël, E.S., Guryev, V., Peterson, K.A., Shah, G., Huisken, J., McMahon, A.P., Berezikov, E., Bakkers, J., van Oudenaarden, A. (2014) Genome-wide RNA Tomography in the Zebrafish Embryo. Cell. 159:662-75
|
Kim, J.D., Kim, H.J., Koun, S., Ham, H.J., Kim, M.J., Rhee, M., Huh, T.L. (2014) Zebrafish Crip2 Plays a Critical Role in Atrioventricular Valve Development by Downregulating the Expression of ECM Genes in the Endocardial Cushion. Molecules and cells. 37(5):406-11
|
|
Li, M., Hu, X., Zhu, J., Zhu, C., Zhu, S., Liu, X., Xu, J., Han, S., Yu, Z. (2014) Overexpression of miR-19b Impairs Cardiac Development in Zebrafish by Targeting ctnnb1. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 33:1988-2002
|
Li, M., Wang, X., Zhu, J., Zhu, S., Hu, X., Zhu, C., Guo, X., Yu, Z., Han, S. (2014) Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Molecular biology reports. 41(12):7973-83
|
Nolte, H., Konzer, A., Ruhs, A., Jungblut, B., Braun, T., Krüger, M. (2014) Global protein expression profiling of zebrafish organs based on in vivo incorporation of stable isotopes. Journal of Proteome Research. 13:2162-74
|
|
|
|
|
Tong, X., Zu, Y., Li, Z., Li, W., Ying, L., Yang, J., Wang, X., He, S., Liu, D., Zhu, Z., Chen, J., Lin, S., and Zhang, B. (2014) Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nature communications. 5:3153
|
Venturin, M., Carra, S., Gaudenzi, G., Brunelli, S., Gallo, G.R., Moncini, S., Cotelli, F., Riva, P. (2014) ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome. Journal of Medical Genetics. 51(7):436-43
|
|
Zhang, B.L., Ye, Z., Xu, R.L., You, X.H., Qin, Y.W., Wu, H., Cao, J., Zhang, J.L., Zheng, X., and Zhao, X.X. (2014) Overexpression of G100S Mutation in PRKAG2 Causes Wolff-Parkinson-White Syndrome in Zebrafish. Clinical genetics. 86(3):287-91
|
|
|
|
|
Fang, Y., Gupta, V., Karra, R., Holdway, J.E., Kikuchi, K., and Poss, K.D. (2013) Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America. 110(33):13416-13421
|
Haas, J., Frese, K.S., Park, Y.J., Keller, A., Vogel, B., Lindroth, A.M., Weichenhan, D., Franke, J., Fischer, S., Bauer, A., Marquart, S., Sedaghat-Hamedani, F., Kayvanpour, E., Kohler, D., Wolf, N.M., Hassel, S., Nietsch, R., Wieland, T., Ehlermann, P., Schultz, J.H., Dosch, A., Mereles, D., Hardt, S., Backs, J., Hoheisel, J.D., Plass, C., Katus, H.A., and Meder, B. (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Molecular Medicine. 5(3):413-429
|
|
|
Monte, E., Mouillesseaux, K., Chen, H., Kimball, T., Ren, S., Wang, Y., Chen, J.N., Vondriska, T.M., and Franklin, S. (2013) Systems Proteomics of Cardiac Chromatin Identifies Nucleolin as a Regulator of Growth and Cellular Plasticity in Cardiomyocytes. American journal of physiology. Heart and circulatory physiology. 305(11):H1624-38
|
Müller, I.I., Melville, D.B., Tanwar, V., Rybski, W.M., Mukherjee, A., Shoemaker, B.M., Wang, W.D., Schoenhard, J.A., Roden, D.M., Darbar, D., Knapik, E.W., and Hatzopoulos, A.K. (2013) Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. Disease models & mechanisms. 6(2):332-341
|
Nevis, K., Obregon, P., Walsh, C., Guner-Ataman, B., Burns, C.G., and Burns, C.E. (2013) Tbx1 is required for second heart field proliferation in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 242(5):540-549
|
|
Ramachandran, K.V., Hennessey, J.A., Barnett, A.S., Yin, X., Stadt, H.A., Foster, E., Shah, R.A., Yazawa, M., Dolmetsch, R.E., Kirby, M.L., and Pitt, G.S. (2013) Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. J. Clin. Invest.. 123(4):1638-46
|
Samson, S.C., Ferrer, T., Jou, C.J., Sachse, F.B., Shankaran, S.S., Shaw, R.M., Chi, N.C., Tristani-Firouzi, M., and Yost, H.J. (2013) 3-OST-7 regulates BMP-dependent cardiac contraction. PLoS Biology. 11(12):e1001727
|
|
|
Targoff, K.L., Colombo, S., George, V., Schell, T., Kim, S.H., Solnica-Krezel, L., and Yelon, D. (2013) Nkx genes are essential for maintenance of ventricular identity. Development (Cambridge, England). 140(20):4203-4213
|
|
Wang, X., Zhou, L., Jin, J., Yang, Y., Song, G., Shen, Y., Liu, H., Liu, M., Shi, C., and Qian, L. (2013) Knockdown of FABP3 Impairs Cardiac Development in Zebrafish through the Retinoic Acid Signaling Pathway. International Journal of Molecular Sciences. 14(7):13826-13841
|
Xie, H., Fan, X., Tang, X., Wan, Y., Chen, F., Wang, X., Wang, Y., Li, Y., Tang, M., Liu, D., Jiang, Z., Liu, X., Yuan, W., Li, G., Ye, X., Zhou, J., Deng, Y., and Wu, X. (2013) The LIM protein fhlA is essential for heart chamber development in zebrafish embryos. Current Molecular Medicine. 13(6):979-92
|
Yan, L., Zhou, Y., Yu, S., Ji, G., Wang, L., Liu, W., and Gu, A. (2013) 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish. Experimental cell research. 319(19):2954-63
|
Zhang, R., Han, P., Yang, H., Ouyang, K., Lee, D., Lin, Y.F., Ocorr, K., Kang, G., Chen, J., Stainier, D.Y., Yelon, D., and Chi, N.C. (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 498(7455):497-501
|
|
|
|
|
Dong, W., Yang, Z., Yang, F., Wang, J., Zhuang, Y., Xu, C., Zhang, B., Tian, X.L., and Liu, D. (2012) Suppression of rap1 impairs cardiac myofibrils and conduction system in zebrafish. PLoS One. 7(11):e50960
|
Garnaas, M.K., Cutting, C.C., Meyers, A., Kelsey, P.B., Harris, J.M., North, T.E., and Goessling, W. (2012) Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Developmental Biology. 372(2):178-189
|
Glenn, N.O., McKane, M., Kohli, V., Wen, K.K., Rubenstein, P.A., Bartmanm, T., and Sumanas, S. (2012) The W-Loop of Alpha-Cardiac Actin Is Critical for Heart Function and Endocardial Cushion Morphogenesis in Zebrafish. Molecular and cellular biology. 32(17):3527-3540
|
Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C.B., and Hughes, S.M. (2012) Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Developmental Biology. 369(2):199-210
|
Huang, H., Jin, T., He, J., Ding, Q., Xu, D., Wang, L., Zhang, Y., Pan, Y., Wang, Z., and Chen, Y. (2012) Progesterone and AdipoQ Receptor 11 Links Ras Signaling to Cardiac Development in Zebrafish. Arterioscler. Thromb. Vasc. Biol.. 32(9):2158-2170
|
Liu, Q., Dalman, M., Chen, Y., Akhter, M., Brahmandam, S., Patel, Y., Lowe, J., Thakkar, M., Gregory, A.V., Phelps, D., Riley, C., and Londraville, R.L. (2012) Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development. General and comparative endocrinology. 178(3):562-572
|
Moriarty, M.A., Ryan, R., Lalor, P., Dockery, P., Byrnes, L., and Grealy, M. (2012) Loss of plakophilin 2 disrupts heart development in zebrafish. The International journal of developmental biology. 56(9):711-718
|
Nishiyama, T., Kaneda, R., Ono, T., Tohyama, S., Hashimoto, H., Endo, J., Tsuruta, H., Yuasa, S., Ieda, M., Makino, S., and Fukuda, K. (2012) miR-142-3p is essential for hematopoiesis and affects cardiac cell fate in zebrafish. Biochemical and Biophysical Research Communications. 425(4):755-761
|
Paige, S.L., Thomas, S., Stoick-Cooper, C.L., Wang, H., Maves, L., Sandstrom, R., Pabon, L., Reinecke, H., Pratt, G., Keller, G., Moon, R.T., Stamatoyannopoulos, J., and Murry, C.E. (2012) A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development. Cell. 151(1):221-232
|
Poon, K.L., Tan, K.T., Wei, Y.Y., Ng, C.P., Colman, A., Korzh, V., and Xu, X.Q. (2012) RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovascular research. 94(3):418-427
|
Spaich, S., Will, R.D., Just, S., Spaich, S., Kuhn, C., Frank, D., Berger, I., Wiemann, S., Korn, B., Koegl, M., Backs, J., Katus, H.A., Rottbauer, W., and Frey, N. (2012) Fbxl22, A Cardiac-Enriched F-Box Protein, Regulates Sarcomeric Protein Turnover and is Essential for Maintenance of Contractile Function In Vivo. Circulation research. 111(12):1504-1516
|
Tobia, C., Chiodelli, P., Nicoli, S., Dell'era, P., Buraschi, S., Mitola, S., Foglia, E., van Loenen, P.B., Alewijnse, A.E., and Presta, M. (2012) Sphingosine-1-Phosphate Receptor-1 Controls Venous Endothelial Barrier Integrity in Zebrafish. Arterioscler. Thromb. Vasc. Biol.. 32(9):e104-116
|
Tsai, T.C., Lu, J.K., Choo, S.L., Yeh, S.Y., Tang, R.B., Lee, H.Y., and Lu, J.H. (2012) The paracrine effect of exogenous growth hormone alleviates dysmorphogenesis caused by tbx5 deficiency in zebrafish (Danio rerio) embryos. Journal of Biomedical Science. 19(1):63
|
|
|
Just, S., Berger, I.M., Meder, B., Backs, J., Keller, A., Marquart, S., Frese, K., Patzel, E., Rauch, G.J., Tübingen 2000 Screen Consortium, Katus, H.A., and Rottbauer, W. (2011) Protein Kinase D2 Controls Cardiac Valve Formation in Zebrafish by Regulating Histone Deacetylase 5 Activity. Circulation. 124(3):324-34
|
Just, S., Meder, B., Berger, I.M., Etard, C., Trano, N., Patzel, E., Hassel, D., Marquart, S., Dahme, T., Vogel, B., Fishman, M.C., Katus, H.A., Strähle, U., and Rottbauer, W. (2011) The myosin-interacting protein SMYD1 is essential for sarcomere organization. Journal of Cell Science. 124(Pt 18):3127-36
|
Kikuchi, K., Holdway, J.E., Major, R.J., Blum, N., Dahn, R.D., Begemann, G., and Poss, K.D. (2011) Retinoic Acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Developmental Cell. 20(3):397-404
|
|
Langenbacher, A.D., Nguyen, C.T., Cavanaugh, A.M., Huang, J., Lu, F., and Chen, J.N. (2011) The PAF1 complex differentially regulates cardiomyocyte specification. Developmental Biology. 353(1):19-28
|
|
Maragh, S., Miller, R.A., Bessling, S.L., McGaughey, D.M., Wessels, M.W., de Graaf, B., Stone, E.A., Bertoli-Avella, A.M., Gearhart, J.D., Fisher, S., and McCallion, A.S. (2011) Identification of RNA binding motif proteins essential for cardiovascular development. BMC Developmental Biology. 11(1):62
|
Miyasaka, K.Y., Kida, Y.S., Banjo, T., Ueki, Y., Nagayama, K., Matsumoto, T., Sato, M., and Ogura, T. (2011) Heartbeat regulates cardiogenesis by suppressing retinoic acid signaling via expression of miR-143. Mechanisms of Development. 128(1-2):18-28
|
Ni, T.T., Rellinger, E.J., Mukherjee, A., Xie, S., Stephens, L., Thorne, C.A., Kim, K., Hu, J., Lee, E., Marnett, L., Hatzopoulos, A.K., and Zhong, T.P. (2011) Discovering Small Molecules that Promote Cardiomyocyte Generation by Modulating Wnt Signaling. Chemistry & Biology. 18(12):1658-1668
|
Palencia-Desai, S., Kohli, V., Kang, J., Chi, N.C., Black, B.L., and Sumanas, S. (2011) Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function. Development (Cambridge, England). 138(21):4721-4732
|
Patra, C., Diehl, F., Ferrazzi, F., van Amerongen, M.J., Novoyatleva, T., Schaefer, L., Mühlfeld, C., Jungblut, B., and Engel, F.B. (2011) Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish. Development (Cambridge, England). 138(20):4499-4509
|
|
|
Smith, K.A., Lagendijk, A.K., Courtney, A.D., Chen, H., Paterson, S., Hogan, B.M., Wicking, C., and Bakkers, J. (2011) Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development. Development (Cambridge, England). 138(19):4193-4198
|
|
|
Takeuchi, J.K., Lou, X., Alexander, J.M., Sugizaki, H., Delgado-Olguín, P., Holloway, A.K., Mori, A.D., Wylie, J.N., Munson, C., Zhu, Y., Zhou, Y.Q., Yeh, R.F., Henkelman, R.M., Harvey, R.P., Metzger, D., Chambon, P., Stainier, D.Y., Pollard, K.S., Scott, I.C., and Bruneau, B.G. (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nature communications. 2:187
|
Wythe, J.D., Jurynec, M.J., Urness, L.D., Jones, C.A., Sabeh, M.K., Werdich, A.A., Sato, M., Yost, H.J., Grunwald, D.J., MacRae, C.A., and Li, D.Y. (2011) Hadp1, a newly identified pleckstrin homology domain protein, is required for cardiac contractility in zebrafish. Disease models & mechanisms. 4(5):607-21
|
Xu, D.J., Bu, J.W., Gu, S.Y., Xia, Y.M., Du, J.L., and Wang, Y.W. (2011) Celecoxib Impairs Heart Development via Inhibiting Cyclooxygenase-2 Activity in Zebrafish Embryos. Anesthesiology. 114(2):391-400
|
Beqqali, A., Monshouwer-Kloots, J., Monteiro, R., Welling, M., Bakkers, J., Ehler, E., Verkleij, A., Mummery, C., and Passier, R. (2010) CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. Journal of Cell Science. 123(Pt 7):1141-1150
|
Camarata, T., Krcmery, J., Snyder, D., Park, S., Topczewski, J., and Simon, H.G. (2010) Pdlim7 (LMP4) regulation of Tbx5 specifies zebrafish heart atrio-ventricular boundary and valve formation. Developmental Biology. 337(2):233-245
|
Chopra, S.S., Stroud, D.M., Watanabe, H., Bennett, J.S., Burns, C.G., Wells, K.S., Yang, T., Zhong, T.P., and Roden, D.M. (2010) Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish. Circulation research. 106(8):1342-1350
|
|
|
|
Sogah, V.M., Serluca, F.C., Fishman, M.C., Yelon, D.L., MacRae, C.A., and Mably, J.D. (2010) Distinct troponin C isoform requirements in cardiac and skeletal muscle. Developmental Dynamics : an official publication of the American Association of Anatomists. 239(11):3115-3123
|
Will, R.D., Eden, M., Just, S., Hansen, A., Eder, A., Frank, D., Kuhn, C., Seeger, T.S., Oehl, U., Wiemann, S., Korn, B., Koegl, M., Rottbauer, W., Eschenhagen, T., Katus, H.A., and Frey, N. (2010) Myomasp/LRRC39, a Heart- and Muscle-Specific Protein, Is a Novel Component of the Sarcomeric M-Band and Is Involved in Stretch Sensing. Circulation research. 107(10):1253-1264
|
|
Znosko, W.A., Yu, S., Thomas, K., Molina, G.A., Li, C., Tsang, W., Dawid, I.B., Moon, A.M., and Tsang, M. (2010) Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Developmental Biology. 342(1):11-25
|
Delvaeye, M., Devriese, A., Zwerts, F., Betz, I., Moons, M., Autiero, M., and Conway, E.M. (2009) Role of the 2 zebrafish survivin genes in vasculo-angiogenesis, neurogenesis, cardiogenesis and hematopoiesis. BMC Developmental Biology. 9:25
|
|
|
Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., and Mochizuki, N. (2009) The Sphingolipid Transporter Spns2 Functions in Migration of Zebrafish Myocardial Precursors. Science (New York, N.Y.). 323(5913):524-527
|
Ko, S.K., Jin, H.J., Jung, D.W., Tian, X., and Shin, I. (2009) Cardiosulfa, a Small Molecule that Induces Abnormal Heart Development in Zebrafish, and Its Biological Implications. Angewandte Chemie (International ed. in English). 48(42):7809-7812
|
|
|
|
|
Molina, G., Vogt, A., Bakan, A., Dai, W., de Oliveira, P.Q., Znosko, W., Smithgall, T.E., Bahar, I., Lazo, J.S., Day, B.W., and Tsang, M. (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature Chemical Biology. 5(9):680-687
|
Park, J.S., Kim, H.S., Kim, J.D., Seo, J., Chung, K.S., Lee, H.S., Huh, T.L., Jo, I., and Kim, Y.O. (2009) Isolation of a ventricle-specific promoter for the zebrafish ventricular myosin heavy chain (vmhc) gene and its regulation by GATA factors during embryonic heart development. Developmental Dynamics : an official publication of the American Association of Anatomists. 238(6):1574-1581
|
Sun, S., Gui, Y., Wang, Y., Qian, L., Liu, X., Jiang, Q., and Song, H. (2009) Effects of methotrexate on the developments of heart and vessel in zebrafish. Acta biochimica et biophysica Sinica. 41(1):86-96
|
|
|
|
|
|
Chen, Z., Huang, W., Dahme, T., Rottbauer, W., Ackerman, M.J., and Xu, X. (2008) Depletion of Zebrafish Essential and Regulatory Myosin Light Chains Reduces Cardiac Function Through Distinct Mechanisms. Cardiovascular research. 79(1):97-108
|
Chi, N.C., Shaw, R.M., De Val, S., Kang, G., Jan, L.Y., Black, B.L., and Stainier, D.Y. (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes & Development. 22(6):734-739
|
Chi, N.C., Shaw, R.M., Jungblut, B., Huisken, J., Ferrer, T., Arnaout, R., Scott, I., Beis, D., Xiao, T., Baier, H., Jan, L.Y., Tristani-Firouzi, M., and Stainier, D.Y. (2008) Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System. PLoS Biology. 6(5):e109
|
Ebert, A.M., McAnelly, C.A., Handschy, A.V., Mueller, R.L., Horne, W.A., and Garrity, D.M. (2008) Genomic organization, expression, and phylogenetic analysis of Ca2+ channel β4 genes in 13 vertebrate species. Physiological Genomics. 35(2):133-144
|
Lange, M., Kaynak, B., Forster, U.B., Tönjes, M., Fischer, J.J., Grimm, C., Schlesinger, J., Just, S., Dunkel, I., Krueger, T., Mebus, S., Lehrach, H., Lurz, R., Gobom, J., Rottbauer, W., Abdelilah-Seyfried, S., and Sperling, S. (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes & Development. 22(17):2370-2384
|
Lu, J.H., Lu, J.K., Choo, S.L., Li, Y.C., Yeh, H.W., Shiue, J.F., and Yeh, V.C. (2008) Cascade effect of cardiac myogenesis gene expression during cardiac looping in tbx5 knockdown zebrafish embryos. Journal of Biomedical Science. 15(6):779-787
|
|
Morton, S.U., Scherz, P.J., Cordes, K.R., Ivey, K.N., Stainier, D.Y., and Srivastava, D. (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proceedings of the National Academy of Sciences of the United States of America. 105(46):17830-17835
|
Qu, X., Jia, H., Garrity, D.M., Tompkins, K., Batts, L., Appel, B., Zhong, T.P., and Baldwin, H.S. (2008) ndrg4 is required for normal myocyte proliferation during early cardiac development in zebrafish. Developmental Biology. 317(2):486-496
|
Smith, K.A., Chocron, S., von der Hardt, S., de Pater, E., Soufan, A., Bussmann, J., Schulte-Merker, S., Hammerschmidt, M., and Bakkers, J. (2008) Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Developmental Cell. 14(2):287-297
|
Sultana, N., Nag, K., Hoshijima, K., Laird, D.W., Kawakami, A., and Hirose, S. (2008) Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proceedings of the National Academy of Sciences of the United States of America. 105(12):4763-4768
|
|
Thomas, N.A., Koudijs, M., van Eeden, F.J., Joyner, A.L., and Yelon, D. (2008) Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development (Cambridge, England). 135(22):3789-3799
|
|
Zhao, L., Zhao, X., Tian, T., Lu, Q., Skrbo-Larssen, N., Wu, D., Kuang, Z., Zheng, X., Han, Y., Yang, S., Zhang, C., and Meng, A. (2008) Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovascular research. 80(2):200-208
|
Auman, H.J., Coleman, H., Riley, H.E., Olale, F., Tsai, H.J., and Yelon, D. (2007) Functional Modulation of Cardiac Form through Regionally Confined Cell Shape Changes. PLoS Biology. 5(3):e53
|
|
|
|
Jia, H., King, I.N., Chopra, S.S., Wan, H., Ni, T.T., Jiang, C., Guan, X., Wells, S., Srivastava, D., and Zhong, T.P. (2007) Vertebrate heart growth is regulated by functional antagonism between Gridlock and Gata5. Proceedings of the National Academy of Sciences of the United States of America. 104(35):14008-14013
|
Lee, H.C., Tsai, J.N., Liao, P.Y., Tsai, W.Y., Lin, K.Y., Chuang, C.C., Sun, C.K., Chang, W.C., and Tsai, H.J. (2007) Glycogen synthase kinase 3alpha and 3beta have distinct functions during cardiogenesis of zebrafish embryo. BMC Developmental Biology. 7(1):93
|
Lu, G., Ren, S., Korge, P., Choi, J., Dong, Y., Weiss, J., Koehler, C., Chen, J.N, and Wang, Y. (2007) A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes & Development. 21(7):784-796
|
Maves, L., Waskiewicz, A.J., Paul, B., Cao, Y., Tyler, A., Moens, C.B., and Tapscott, S.J. (2007) Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development (Cambridge, England). 134(18):3371-3382
|
|
|
Scott, I.C., Masri, B., D'Amico, L.A., Jin, S.W., Jungblut, B., Wehman, A.M., Baier, H., Audigier, Y., and Stainier, D.Y. (2007) The G protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Developmental Cell. 12(3):403-413
|
Wang, Y.X., Qian, L.X., Liu, D., Yao, L.L., Jiang, Q., Yu, Z., Gui, Y.H., Zhong, T.P., and Song, H.Y. (2007) Bone morphogenetic protein-2 acts upstream of myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. Cardiovascular research. 74(2):290-303
|
|
|
|
Cheng, L., Guo, X.F., Yang, X.Y., Chong, M., Cheng, J., Li, G., Gui, Y.H., and Lu, D.R. (2006) delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochemical and Biophysical Research Communications. 344(4):1290-1299
|
Mably, J.D., Chuang, L.P., Serluca, F.C., Mohideen, M.A., Chen, J.N., and Fishman, M.C. (2006) santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development (Cambridge, England). 133(16):3139-3146
|
Milan, D.J., Giokas, A.C., Serluca, F.C., Peterson, R.T., and MacRae, C.A. (2006) Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development (Cambridge, England). 133(6):1125-1132
|
|
Rottbauer, W., Wessels, G., Dahme, T., Just, S., Trano, N., Hassel, D., Burns, C.G., Katus, H.A., and Fishman, M.C. (2006) Cardiac Myosin Light Chain-2. A Novel Essential Component of Thick-Myofilament Assembly and Contractility of the Heart. Circulation research. 99(3):323-331
|
van der Meer, D.L., Marques, I.J., Leito, J.T., Besser, J., Bakkers, J., Schoonheere, E., and Bagowski, C.P. (2006) Zebrafish cypher is important for somite formation and heart development. Developmental Biology. 299(2):356-372
|
Zhang, L., Zhong, T., Wang, Y., Jiang, Q., Song, H., and Gui, Y. (2006) TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid. The International journal of developmental biology. 50(1):55-61
|
|
Ebert, A.M., Hume, G.L., Warren, K.S., Cook, N.P., Burns, C.G., Mohideen, M.A., Siegal, G., Yelon, D., Fishman, M.C., and Garrity, D.M. (2005) Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proceedings of the National Academy of Sciences of the United States of America. 102(49):17705-17710
|
|
Incardona, J.P., Carls, M.G., Teraoka, H., Sloan, C.A., Collier, T.K., and Scholz, N.L. (2005) Aryl Hydrocarbon Receptor-Independent Toxicity of Weathered Crude Oil during Fish Development. Environmental health perspectives. 113(12):1755-1762
|
Langenbacher, A.D., Dong, Y., Shu, X., Choi, J., Nicoll, D.A., Goldhaber, J.I., Philipson, K.D., and Chen, J.N. (2005) Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 102(49):17699-17704
|
Rottbauer, W., Just, S., Wessels, G., Trano, N., Most, P., Katus, H.A., and Fishman, M.C. (2005) VEGF-PLC{gamma}1 pathway controls cardiac contractility in the embryonic heart. Genes & Development. 19(13):1624-1634
|
Wang, Y., Zhong, T., Qian, L., Dong, Y., Jiang, Q., Tan, L., and Song, H. (2005) Wortmannin induces zebrafish cardia bifida through a mechanism independent of phosphoinositide 3-kinase and myosin light chain kinase. Biochemical and Biophysical Research Communications. 331(1):303-308
|
Wang, Y.X., Qian, L.X., Yu, Z., Jiang, Q., Dong, Y.X., Liu, X.F., Xin-Ying, Y., Zhong, T.P., and Song, H.Y. (2005) Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility. FEBS letters. 579(21):4843-4850
|
Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
|
|
Berdougo, E., Coleman, H., Lee, D.H., Stainier, D.Y., and Yelon, D. (2003) Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development (Cambridge, England). 130(24):6121-6129
|
|
|
|
|
Shu, X., Cheng, K., Patel, N., Chen, F., Joseph, E., Tsai, H.-J., and Chen, J.-N. (2003) Na,K-ATPase is essential for embryonic heart development in the zebrafish. Development (Cambridge, England). 130:6165-6173
|
|
|
|
|
Yelon, D., Ticho, B., Halpern, M.E., Ruvinsky, I., Ho, R.K., Silver, L.M., and Stainier, D.Y. (2000) The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development (Cambridge, England). 127(12):2573-2582
|
|