ZFIN ID: ZDB-PUB-080326-29
Foxn4 directly regulates tbx2b expression and atrioventricular canal formation
Chi, N.C., Shaw, R.M., De Val, S., Kang, G., Jan, L.Y., Black, B.L., and Stainier, D.Y.
Date: 2008
Source: Genes and Development 22(6): 734-739 (Journal)
Registered Authors: Chi, Neil C., Stainier, Didier
Keywords: Atrioventricular canal, evolutionary development, Forkhead transcription factors, T-box transcription factors, calcium indicator, mutations
MeSH Terms: Animals; Animals, Genetically Modified; Atrioventricular Node/embryology*; Binding Sites; Chromosome Mapping (all 21) expand
PubMed: 18347092 Full text @ Genes Dev.
FIGURES   (current status)
ABSTRACT
Cardiac chamber formation represents an essential evolutionary milestone that allows for the heart to receive (atrium) and pump (ventricle) blood throughout a closed circulatory system. Here, we reveal a novel transcriptional pathway between foxn4 and tbx genes that facilitates this evolutionary event. We show that the zebrafish gene slipjig, which encodes Foxn4, regulates the formation of the atrioventricular (AV) canal to divide the heart. sli/foxn4 is expressed in the AV canal, and its encoded product binds to a highly conserved tbx2 enhancer domain that contains Foxn4- and T-box-binding sites, both necessary to regulate tbx2b expression in the AV canal.
ADDITIONAL INFORMATION