header logo image header logo text
Downloads Login
Research
General Information
ZIRC
ZFIN ID: ZDB-PUB-080908-6
Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex
Lange, M., Kaynak, B., Forster, U.B., Tönjes, M., Fischer, J.J., Grimm, C., Schlesinger, J., Just, S., Dunkel, I., Krueger, T., Mebus, S., Lehrach, H., Lurz, R., Gobom, J., Rottbauer, W., Abdelilah-Seyfried, S., and Sperling, S.
Date: 2008
Source: Genes & Development 22(17): 2370-2384 (Journal)
Registered Authors: Abdelilah-Seyfried, Salim, Just, Steffen, Lehrach, Hans, Rottbauer, Wolfgang
Keywords: Heart and skeletal muscle development and function, PHD finger, BAF chromatin remodeling complex, SMARCD3–BAF60, acetylated and methylated histones, Mef2
MeSH Terms:
  • Acetylation
  • Amino Acid Sequence
  • Animals
  • Chick Embryo
  • Chromatin Assembly and Disassembly
  • DNA-Binding Proteins/biosynthesis*
  • DNA-Binding Proteins/genetics
  • Epigenesis, Genetic
  • Heart/embryology*
  • Histones/metabolism
  • Humans
  • Methylation
  • Mice
  • Molecular Sequence Data
  • Muscle Development/physiology*
  • Myocardium/metabolism
  • Transcription Factors/biosynthesis*
  • Transcription Factors/genetics
  • Zebrafish/embryology
  • Zebrafish/metabolism
PubMed: 18765789 Full text @ Genes & Dev.
FIGURES
ABSTRACT
Chromatin remodeling and histone modifications facilitate access of transcription factors to DNA by promoting the unwinding and destabilization of histone-DNA interactions. We present DPF3, a new epigenetic key factor for heart and muscle development characterized by a double PHD finger. DPF3 is associated with the BAF chromatin remodeling complex and binds methylated and acetylated lysine residues of histone 3 and 4. Thus, DPF3 may represent the first plant homeodomains that bind acetylated lysines, a feature previously only shown for the bromodomain. During development Dpf3 is expressed in the heart and somites of mouse, chicken, and zebrafish. Morpholino knockdown of dpf3 in zebrafish leads to incomplete cardiac looping and severely reduced ventricular contractility, with disassembled muscular fibers caused by transcriptional deregulation of structural and regulatory proteins. Promoter analysis identified Dpf3 as a novel downstream target of Mef2a. Taken together, DPF3 adds a further layer of complexity to the BAF complex by representing a tissue-specific anchor between histone acetylations as well as methylations and chromatin remodeling. Furthermore, this shows that plant homeodomain proteins play a yet unexplored role in recruiting chromatin remodeling complexes to acetylated histones.
ADDITIONAL INFORMATION