|
|
Aoki T.O., David, N.B., Minchiotti, G., Saint-Etienne, L., Dickmeis, T., Persico, G.M., Strähle, U., Mourrain, P., and Rosa, F.M. (2002) Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation. Development (Cambridge, England). 129(2):275-286
|
Bjornson, C.R., Griffin, K.J., Farr, G.H. 3rd, Terashima, A., Himeda, C., Kikuchi, Y., and Kimelman, D. (2005) Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Developmental Cell. 9(4):523-533
|
Capon, S.J., Baillie, G.J., Bower, N.I., da Silva, J.A., Paterson, S., Hogan, B.M., Simons, C., Smith, K.A. (2017) Utilising polymorphisms to achieve allele-specific genome editing in zebrafish. Biology Open. 6(1):125-131
|
|
|
|
Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013) Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Research. 23(4):465-472
|
Chen, J.N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F.J., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., and Nüsslein-Volhard, C. (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development (Cambridge, England). 123:293-302
|
|
Cheng, P., Andersen, P., Hassel, D., Kaynak, B.L., Limphong, P., Juergensen, L., Kwon, C., and Srivastava, D. (2013) Fibronectin mediates mesendodermal cell fate decisions. Development (Cambridge, England). 140(12):2587-2596
|
Cheng, P.Y., Lin, C.C., Wu, C.S., Lu, Y.F., Lin, C.Y., Chung, C.C., Chu, C.Y, Huang, C.J., Tsai, C.Y., Korzh, S., Wu, J.L., and Hwang, S.P. (2008) Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development (Cambridge, England). 135(5):941-952
|
|
Chopra, S.S., Stroud, D.M., Watanabe, H., Bennett, J.S., Burns, C.G., Wells, K.S., Yang, T., Zhong, T.P., and Roden, D.M. (2010) Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish. Circulation research. 106(8):1342-1350
|
Chu, L., Yin, H., Gao, L., Gao, L., Xia, Y., Zhang, C., Chen, Y., Liu, T., Huang, J., Boheler, K.R., Zhou, Y., Yang, H.T. (2020) Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. Science China. Life sciences. 64(2):255-268
|
|
|
Deshwar, A.R., Onderisin, J.C., Aleksandrova, A., Yuan, X., Burrows, J.T., Scott, I.C. (2016) Mespaa can potently induce cardiac fates in zebrafish. Developmental Biology. 418(1):17-27
|
Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark, M., Strähle, U., and Rosa, F. (2001) A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes & Development. 15(12):1487-1492
|
|
Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
|
|
|
Fang, Y., Lai, K.S., She, P., Sun, J., Tao, W., Zhong, T.P. (2020) Tbx20 Induction Promotes Zebrafish Heart Regeneration by Inducing Cardiomyocyte Dedifferentiation and Endocardial Expansion. Frontiers in cell and developmental biology. 8:738
|
Fittipaldi, R., Floris, P., Proserpio, V., Cotelli, F., Beltrame, M., Caretti, G. (2021) The Lysine Methylase SMYD3 Modulates Mesendodermal Commitment during Development. Cells. 10(5):
|
|
|
Fujii, T., Tsunesumi, S.I., Sagara, H., Munakata, M., Hisaki, Y., Sekiya, T., Furukawa, Y., Sakamoto, K., Watanabe, S. (2016) Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis. Scientific Reports. 6:29157
|
|
Fukui, H., Terai, K., Nakajima, H., Chiba, A., Fukuhara, S., Mochizuki, N. (2014) S1P-Yap1 Signaling Regulates Endoderm Formation Required for Cardiac Precursor Cell Migration in Zebrafish. Developmental Cell. 31:128-136
|
|
Gu, J., Wang, H., Zhou, L., Fan, D., Shi, L., Ji, G., Gu, A. (2020) Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. The Science of the total environment. 731:139190
|
Gupta, V., Gemberling, M., Karra, R., Rosenfeld, G.E., Evans, T., and Poss, K.D. (2013) An Injury-Responsive Gata4 Program Shapes the Zebrafish Cardiac Ventricle. Current biology : CB. 23(13):1221-7
|
|
Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nüsslein-Volhard, C. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development (Cambridge, England). 123:1-36
|
|
|
Hempel, M., Casar Tena, T., Diehl, T., Burczyk, M.S., Strom, T.M., Kubisch, C., Philipp, M., Lessel, D. (2017) Compound heterozygous GATA5 mutations in a girl with hydrops fetalis, congenital heart defects and genital anomalies. Human genetics. 136(3):339-346
|
Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C.B., and Hughes, S.M. (2012) Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Developmental Biology. 369(2):199-210
|
|
|
Hong, S.K., Jang, M.K., Brown, J.L., McBride, A.A., and Feldman, B. (2011) Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development (Cambridge, England). 138(4):787-795
|
|
|
Jia, H., King, I.N., Chopra, S.S., Wan, H., Ni, T.T., Jiang, C., Guan, X., Wells, S., Srivastava, D., and Zhong, T.P. (2007) Vertebrate heart growth is regulated by functional antagonism between Gridlock and Gata5. Proceedings of the National Academy of Sciences of the United States of America. 104(35):14008-14013
|
Jia, W., Liang, D., Li, N., Liu, M., Dong, Z., Li, J., Dong, X., Yue, Y., Hu, P., Yao, J., Zhao, Q. (2018) Zebrafish microRNA miR-210-5p inhibits primitive myelopoiesis by silencing foxj1b and slc3a2a mRNAs downstream of gata4/5/6 transcription factor genes. The Journal of biological chemistry. 294(8):2732-2743
|
|
Jung, J., Choi, I., Ro, H., Huh, T.L., Choe, J., Rhee, M. (2020) march5 Governs the Convergence and Extension Movement for Organization of the Telencephalon and Diencephalon in Zebrafish Embryos. Molecules and cells. 43(1):76-85
|
Kao, R.M., Rurik, J.G., Farr, G.H., Dong, X.R., Majesky, M.W., Maves, L. (2015) Pbx4 is Required for the Temporal Onset of Zebrafish Myocardial Differentiation. Journal of developmental biology. 3:93-111
|
Kazakova, N., Li, H., Mora, A., Jessen, K.R., Mirsky, R., Richardson, W.D., and Smith, H.K. (2006) A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Developmental Biology. 297(1):1-13
|
Keegan, B.R., Feldman, J.L., Begemann, G., Ingham, P.W., and Yelon, D. (2005) Retinoic acid signaling restricts the cardiac progenitor pool. Science (New York, N.Y.). 307(5707):247-249
|
Khan, A., Nakamoto, A., Tai, M., Saito, S., Nakayama, Y., Kawamura, A., Takeda, H., and Yamasu, K. (2012) Mesendoderm specification depends on the function of Pou2, the class V POU-type transcription factor, during zebrafish embryogenesis. Development, growth & differentiation. 54(7):686-701
|
Kikuchi, K., Holdway, J.E., Major, R.J., Blum, N., Dahn, R.D., Begemann, G., and Poss, K.D. (2011) Retinoic Acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Developmental Cell. 20(3):397-404
|
Kikuchi, K., Holdway, J.E., Werdich, A.A., Anderson, R.M., Fang, Y., Egnaczyk, G.F., Evans, T., MacRae, C.A., Stainier, D.Y., and Poss, K.D. (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 464(7288):601-605
|
Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., and Stainier, D.Y. (2001) casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes & Development. 15(12):1493-1505
|
Kranert, K., Woźny, M., Podlasz, P., Wąsowicz, K., Brzuzan, P. (2022) MiR92b-3p synthetic analogue impairs zebrafish embryonic development, leading to ocular defects, decreased movement and hatching rate, and increased mortality. Journal of applied genetics. 64(1):145-157
|
|
Lambaerts, K., Van Dyck, S., Mortier, E., Ivarssonm, Y., Degeest, G., Luyten, A., Vermeiren, E., Peers, B., David, G., and Zimmermann, P. (2012) Syntenin, a syndecan adaptor and an Arf6 phosphatidylinositol 4,5-bisphosphate effector, is essential for epiboly and gastrulation cell movements in zebrafish. Journal of Cell Science. 125(5):1129-1140
|
Langenbacher, A.D., Nguyen, C.T., Cavanaugh, A.M., Huang, J., Lu, F., and Chen, J.N. (2011) The PAF1 complex differentially regulates cardiomyocyte specification. Developmental Biology. 353(1):19-28
|
|
Li, X., Hu, H., Li, R., Wang, Z., Qi, J., Wang, Z. (2020) The role of miR-92 in regulating early development and metamorphosis of Japanese flounder Paralichthys olivaceus. Genes & genetic systems. 95:1-10
|
|
Li, Y., Cui, C., Xie, F., Kiełbasa, S., Mei, H., van Dinther, M., van Dam, H., Bauer, A., Zhang, L., Ten Dijke, P. (2019) VprBP mitigates TGF-β and Activin signaling by promoting Smurf1-mediated type I receptor degradation. Journal of molecular cell biology. 12(2):138-151
|
|
Lin, C.Y., Huang, C.C., Wang, W.D., Hsiao, C.D., Cheng, C.F., Wu, Y.T., Lu, Y.F., and Hwang, S.P. (2013) Low temperature mitigates cardia bifida in zebrafish embryos. PLoS One. 8(7):e69788
|
Lin, C.Y., Tsai, M.Y., Liu, Y.H., Lu, Y.F., Chen, Y.C., Lai, Y.R., Liao, H.C., Lien, H.W., Yang, C.H., Huang, C.J., Hwang, S.L. (2017) Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression. Journal of Biomedical Science. 24:45
|
|
|
Lindeman, L.C., Andersen, I.S., Reiner, A.H., Li, N., Aanes, H., Ostrup, O., Winata, C., Mathavan, S., Muller, F., Aleström, P., and Collas, P. (2011) Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation. Developmental Cell. 21(6):993-1004
|
|
Liu, J.X., Xu, Q.H., Li, S., Yu, X., Liu, W., Ouyang, G., Zhang, T., Chen, L.L. (2017) Transcriptional factors Eaf1/2 inhibit endoderm and mesoderm formation via suppressing TGF-β signaling. Biochimica et biophysica acta. 1860(10):1103-1116
|
Liu, L., Fei, F., Zhang, R., Wu, F., Yang, Q., Wang, F., Sun, S., Zhao, H., Li, Q., Wang, L., Wang, Y., Gui, Y., Wang, X. (2019) Combinatorial genetic replenishments in myocardial and outflow tract tissues restore heart function in tnnt2 mutant zebrafish. Biology Open. 8(12):
|
Liu, X., Xiong, C., Jia, S., Zhang, Y., Chen, Y.G., Wang, Q., and Meng, A. (2013) Araf kinase antagonizes Nodal-Smad2 activity in mesendoderm development by directly phosphorylating the Smad2 linker region. Nature communications. 4:1728
|
Liu, Y., Zhu, Z., Ho, I.H.T., Shi, Y., Li, J., Wang, X., Chan, M.T.V., Cheng, C.H.K. (2020) Genetic Deletion of miR-430 Disrupts Maternal-Zygotic Transition and Embryonic Body Plan. Frontiers in genetics. 11:853
|
Liu, Z., Ning, G., Xu, R., Cao, Y., Meng, A., Wang, Q. (2016) Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation. Nature communications. 7:12603
|
|
|
|
|
Mathieu, J., Barth, A., Rosa, F.M., Wilson, S.W., and Peyriéras, N. (2002) Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development (Cambridge, England). 129(13):3055-3065
|
Matrone, G., Wilson, K.S., Maqsood, S., Mullins, J.J., Tucker, C.S., Denvir, M.A. (2015) CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart. Journal of Cell Science. 128(24):4560-71
|
Matrone, G., Wilson, K.S., Mullins, J.J., Tucker, C.S., Denvir, M.A. (2015) Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart. Differentiation; research in biological diversity. 89(5):117-27
|
Matsui, T., Raya, A., Kawakami, Y., Callol-Massot, C., Capdevila, J., Rodriguez-Esteban, C., Izpisúa Belmonte, J.C. (2005) Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes & Development. 19(1):164-175
|
|
Meneghetti, G., Skobo, T., Chrisam, M., Fontana, C.M., Facchinello, N., Nazio, F., Cecconi, F., Bonaldo, P., Dalla Valle, L. (2020) Zebrafish ambra1a and ambra1b Silencing Affect Heart Development. Zebrafish. :
|
Miyagi, H., Nag, K., Sultana, N., Munakata, K., Hirose, S., Nakamura, N. (2016) Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene. 577(2):265-74
|
|
|
|
Monteiro, R., van Dinther, M., Bakkers, J., Wilkinson, R., Patient, R., Ten Dijke, P., and Mummery, C. (2008) Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Developmental Biology. 315(1):55-71
|
Montero, J.A., Carvalho, L., Wilsch-Bräuninger, M., Kilian, B., Mustafa, C., and Heisenberg, C.P. (2005) Shield formation at the onset of zebrafish gastrulation. Development (Cambridge, England). 132(6):1187-1198
|
Muncan, V., Faro, A., Haramis, A.P., Hurlstone, A.F., Wienholds, E., van Es, J., Korving, J., Begthel, H., Zivkovic, D., and Clevers, H. (2007) T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine. EMBO reports. 8(10):966-973
|
|
Müller, I.I., Melville, D.B., Tanwar, V., Rybski, W.M., Mukherjee, A., Shoemaker, B.M., Wang, W.D., Schoenhard, J.A., Roden, D.M., Darbar, D., Knapik, E.W., and Hatzopoulos, A.K. (2013) Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene GREM2 regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. Disease models & mechanisms. 6(2):332-341
|
|
Nelson, A.C., Cutty, S.J., Gasiunas, S.N., Deplae, I., Stemple, D.L., Wardle, F.C. (2017) In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Reports. 19:2782-2795
|
Nguyen, T.H., Nguyen, P.D., Quetin-Leclercq, J., Muller, M., Ly Huong, D.T., Pham, H.T., Kestemont, P. (2020) Developmental toxicity of Clerodendrum cyrtophyllum turcz ethanol extract in zebrafish embryo. Journal of ethnopharmacology. 267:113538
|
|
|
Oehlers, S.H., Flores, M.V., Chen, T., Hall, C.J., Crosier, K.E., and Crosier, P.S. (2011) Topographical distribution of antimicrobial genes in the zebrafish intestine. Developmental and comparative immunology. 35(3):385-391
|
Oehlers, S.H., Flores, M.V., Okuda, K.S., Hall, C.J., Crosier, K.E., and Crosier, P.S. (2011) A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Developmental Dynamics : an official publication of the American Association of Anatomists. 240(1):288-298
|
Pack, M., Solnica-Krezel, L., Malicki, J., Neuhauss, S.C., Schier, A-, F., Stemple, D.L., Driever, W., and Fishman, M.C. (1996) Mutations affecting development of zebrafish digestive organs. Development (Cambridge, England). 123:321-328
|
Park, J.S., Kim, H.S., Kim, J.D., Seo, J., Chung, K.S., Lee, H.S., Huh, T.L., Jo, I., and Kim, Y.O. (2009) Isolation of a ventricle-specific promoter for the zebrafish ventricular myosin heavy chain (vmhc) gene and its regulation by GATA factors during embryonic heart development. Developmental Dynamics : an official publication of the American Association of Anatomists. 238(6):1574-1581
|
Pawlak, M., Kedzierska, K.Z., Migdal, M., Nahia, K.A., Ramilowski, J.A., Bugajski, L., Hashimoto, K., Marconi, A., Piwocka, K., Carninci, P., Winata, C.L. (2019) Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome research. 29(3):506-519
|
|
|
|
|
|
|
Prummel, K.D., Crowell, H.L., Nieuwenhuize, S., Brombacher, E.C., Daetwyler, S., Soneson, C., Kresoja-Rakic, J., Kocere, A., Ronner, M., Ernst, A., Labbaf, Z., Clouthier, D.E., Firulli, A.B., Sánchez-Iranzo, H., Naganathan, S.R., O'Rourke, R., Raz, E., Mercader, N., Burger, A., Felley-Bosco, E., Huisken, J., Robinson, M.D., Mosimann, C. (2022) Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nature communications. 13:1677
|
Pézeron, G., Lambert, G., Dickmeis, T., Strähle, U., Rosa, F.M., and Mourrain, P. (2008) Rasl11b knock down in zebrafish suppresses one-eyed-pinhead mutant phenotype. PLoS One. 3(1):e1434
|
Qian, Y., Xiao, D., Guo, X., Chen, H., Hao, L., Ma, X., Huang, G., Ma, D., Wang, H. (2017) Multiple gene variations contributed to congenital heart disease via GATA family transcriptional regulation. Journal of translational medicine. 15:69
|
|
Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., and Stainier, D.Y. (1999) Gata5 is required for the development of the heart and endoderm in zebrafish. Genes & Development. 13(22):2983-2995
|
|
|
Ren, Q., Gao, D., Mou, L., Zhang, S., Zhang, M., Li, N., Sik, A., Jin, M., Liu, K. (2021) Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish. European Journal of Pharmacology. 912:174589
|
|
Rodaway, A., Takeda, H., Koshida, S., Broadbent, J., Price, B., Smith, J.C., Patient, R., and Holder, N. (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-ß; family signals and discrimination of mesoderm and endoderm by FGF. Development (Cambridge, England). 126(14):3067-3078
|
Sam, J., Mercer, E.J., Torregroza, I., Banks, K.M., Evans, T. (2020) Specificity, redundancy and dosage thresholds among gata4/5/6 genes during zebrafish cardiogenesis. Biology Open. 9(6):
|
|
|
|
Scott, I.C., Masri, B., D'Amico, L.A., Jin, S.W., Jungblut, B., Wehman, A.M., Baier, H., Audigier, Y., and Stainier, D.Y. (2007) The G protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Developmental Cell. 12(3):403-413
|
Shang, X., Ji, X., Dang, J., Wang, L., Sun, C., Liu, K., Sik, A., Jin, M. (2020) α-asarone induces cardiac defects and QT prolongation through mitochondrial apoptosis pathway in zebrafish. Toxicology letters. 324:1-11
|
Shehata, B.M., Cundiff, C.A., Lee, K., Sabharwal, A., Lalwani, M.K., Davis, A.K., Agarwal, V., Sivasubbu, S., Iannucci, G.J., Gibson, G. (2015) Exome sequencing of patients with histiocytoid cardiomyopathy reveals a de novo NDUFB11 mutation that plays a role in the pathogenesis of histiocytoid cardiomyopathy. American journal of medical genetics. Part A. 167(9):2114-21
|
Shin, C.H., Chung, W.S., Hong, S.K., Ober, E.A., Verkade, H., Field, H.A., Huisken, J., and Stainier, D.Y. (2008) Multiple roles for Med12 in vertebrate endoderm development. Developmental Biology. 317(2):467-479
|
Smith, R.P., Riesenfeld, S.J., Holloway, A.K., Li, Q., Murphy, K.K., Feliciano, N.M., Orecchia, L., Oksenberg, N., Pollard, K.S., and Ahituv, N. (2013) A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design. Genome biology. 14(7):R72
|
Song, G., Han, M., Li, Z., Gan, X., Chen, X., Yang, J., Dong, S., Yan, M., Wan, J., Wang, Y., Huang, Z., Yin, Z., Zheng, F. (2018) Deletion of Pr72 causes cardiac developmental defects in Zebrafish. PLoS One. 13:e0206883
|
Song, M., Yuan, X., Racioppi, C., Leslie, M., Stutt, N., Aleksandrova, A., Christiaen, L., Wilson, M.D., Scott, I.C. (2022) GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. Science advances. 8:eabg0834
|
Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
|
Sultana, N., Nag, K., Hoshijima, K., Laird, D.W., Kawakami, A., and Hirose, S. (2008) Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proceedings of the National Academy of Sciences of the United States of America. 105(12):4763-4768
|
|
|
Talbot, C.D., Walsh, M.D., Cutty, S.J., Elsayed, R., Vlachaki, E., Bruce, A.E.E., Wardle, F.C., Nelson, A.C. (2022) Eomes function is conserved between zebrafish and mouse and controls left-right organiser progenitor gene expression via interlocking feedforward loops. Frontiers in cell and developmental biology. 10:982477
|
|
Torregroza, I., Holtzinger, A., Mendelson, K., Liu, T.C., Hla, T., and Evans, T. (2012) Regulation of a Vascular Plexus by gata4 Is Mediated in Zebrafish through the Chemokine sdf1a. PLoS One. 7(10):e46844
|
|
|
van Rooijen, E., Giles, R.H., Voest, E.E., van Rooijen, C., Schulte-Merker, S., and van Eeden, F.J. (2008) LRRC50, a Conserved Ciliary Protein Implicated in Polycystic Kidney Disease. Journal of the American Society of Nephrology : JASN. 19(6):1128-1138
|
Vandernoot, I., Haerlingen, B., Gillotay, P., Trubiroha, A., Janssens, V., Opitz, R., Costagliola, S. (2020) Enhanced canonical Wnt signaling during early zebrafish development perturbs the interaction of cardiac mesoderm and pharyngeal endoderm and causes thyroid specification defects. Thyroid : official journal of the American Thyroid Association. 31(3):420-438
|
|
Veil, M., Schaechtle, M.A., Gao, M., Kirner, V., Buryanova, L., Grethen, R., Onichtchouk, D. (2017) Maternal Nanog is critical for the zebrafish embryo architecture and for cell viability during gastrulation. Development (Cambridge, England). 145(1)
|
|
|
Wang, L., Liu, Z., Lin, H., Ma, D., Tao, Q., Liu, F. (2017) Epigenetic regulation of left-right asymmetry by DNA methylation. The EMBO journal. 36(20):2987-2997
|
|
Wang, X., Zhao, J., Xu, J., Li, B., Liu, X., Xie, G., Duan, X., Liu, D. (2024) Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal. eLIFE. 13:
|
Wang, X., Zhou, L., Jin, J., Yang, Y., Song, G., Shen, Y., Liu, H., Liu, M., Shi, C., and Qian, L. (2013) Knockdown of FABP3 Impairs Cardiac Development in Zebrafish through the Retinoic Acid Signaling Pathway. International Journal of Molecular Sciences. 14(7):13826-13841
|
Wang, Y.X., Qian, L.X., Liu, D., Yao, L.L., Jiang, Q., Yu, Z., Gui, Y.H., Zhong, T.P., and Song, H.Y. (2007) Bone morphogenetic protein-2 acts upstream of myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. Cardiovascular research. 74(2):290-303
|
|
Wen, B., Yuan, H., Liu, X., Wang, H., Chen, S., Chen, Z., de The, H., Zhou, J., Zhu, J. (2017) GATA5 SUMOylation is indispensable for zebrafish cardiac development. Biochimica et biophysica acta. 1861(7):1691-1701
|
|
Wilkins, S.J., Yoong, S., Verkade, H., Mizoguchi, T., Plowman, S.J., Hancock, J.F., Kikuchi, Y., Heath, J.K., and Perkins, A.C. (2008) Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation. Developmental Biology. 314(1):12-22
|
Winter, M.J., Ono, Y., Ball, J.S., Walentinsson, A., Michaelsson, E., Tochwin, A., Scholpp, S., Tyler, C.R., Rees, S., Hetheridge, M.J., Bohlooly-Y, M. (2022) A Combined Human in Silico and CRISPR/Cas9-Mediated in Vivo Zebrafish Based Approach to Provide Phenotypic Data for Supporting Early Target Validation. Frontiers in pharmacology. 13:827686
|
Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
|
|
Xia, Z., Wei, J., Li, Y., Wang, J., Li, W., Wang, K., Hong, X., Zhao, L., Chen, C., Min, J., Wang, F. (2017) Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genetics. 13:e1006892
|
Xu, C., Fan, Z.P., Müller, P., Fogley, R., Dibiase, A., Trompouki, E., Unternaehrer, J., Xiong, F., Torregroza, I., Evans, T., Megason, S.G., Daley, G.Q., Schier, A.F., Young, R.A., and Zon, L.I. (2012) Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway. Developmental Cell. 22(3):625-238
|
Yang, J., Wang, J., Zeng, Z., Qiao, L., Zhuang, L., Jiang, L., Wei, J., Ma, Q., Wu, M., Ye, S., Gao, Q., Ma, D., Huang, X. (2016) Smad4 is required for the development of cardiac and skeletal muscle in zebrafish. Differentiation; research in biological diversity. 92(4):161-168
|
Ye, L., Bae, M., Cassilly, C.D., Jabba, S.V., Thorpe, D.W., Martin, A.M., Lu, H.Y., Wang, J., Thompson, J.D., Lickwar, C.R., Poss, K.D., Keating, D.J., Jordt, S.E., Clardy, J., Liddle, R.A., Rawls, J.F. (2020) Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host & Microbe. 29(2):179-196.e9
|
Ye, L., Mueller, O., Bagwell, J., Bagnat, M., Liddle, R.A., Rawls, J.F. (2019) High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLIFE. 8:
|
|
Yuan, X., Song, M., Devine, P., Bruneau, B.G., Scott, I.C., Wilson, M.D. (2018) Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nature communications. 9:4977
|
Yue, Y., Jiang, M., He, L., Zhang, Z., Zhang, Q., Gu, C., Liu, M., Li, N., Zhao, Q. (2017) The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells.. The Journal of biological chemistry. 293(2):638-650
|
|
|
Zhang, L., Yang, Y., Li, B., Scott, I.C., Lou, X. (2018) The DEAD box RNA helicase Ddx39ab is essential for myocyte and lens development in zebrafish. Development (Cambridge, England). 145(8)
|
Zhang, Y., Wang, C., Huang, L., Chen, R., Chen, Y., and Zuo, Z. (2012) Low-level pyrene exposure causes cardiac toxicity in zebrafish (Danio rerio) embryos. Aquatic toxicology (Amsterdam, Netherlands). 114-115C:119-124
|
|
|
Zhou, F., Xie, F., Jin, K., Zhang, Z., Clerici, M., Gao, R., van Dinther, M., Sixma, T.K., Huang, H., Zhang, L., Ten Dijke, P. (2017) USP4 inhibits SMAD4 monoubiquitination and promotes activin and BMP signaling. The EMBO journal. 36(11):1623-1639
|
Zhou, J., Wang, L., Zuo, M., Wang, X., Ahmed, A.S., Chen, Q., Wang, Q.K. (2016) Cardiac sodium channel regulator MOG1 regulates cardiac morphogenesis and rhythm. Scientific Reports. 6:21538
|
Zhou, Z., Peng, X., Chen, J., Wu, X., Wang, Y., Hong, Y. (2016) Identification of zebrafish magnetoreceptor and cryptochrome homologs. Science China. Life sciences. 59(12):1324-1331
|