PUBLICATION
Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways
- Authors
- Ye, L., Bae, M., Cassilly, C.D., Jabba, S.V., Thorpe, D.W., Martin, A.M., Lu, H.Y., Wang, J., Thompson, J.D., Lickwar, C.R., Poss, K.D., Keating, D.J., Jordt, S.E., Clardy, J., Liddle, R.A., Rawls, J.F.
- ID
- ZDB-PUB-201223-8
- Date
- 2020
- Source
- Cell Host & Microbe 29(2): 179-196.e9 (Journal)
- Registered Authors
- Lu, Hsiu Yi "Justice", Poss, Kenneth D., Rawls, John F., Thompson, John D., Ye, Lihua
- Keywords
- Danio rerio, bacterial tryptophan catabolism, enteroendocrine cells, gut microbes, gut-brain axis communication, indole, indole-3-carboxaldehyde, intestinal peristalsis, serotonin
- MeSH Terms
-
- Serotonin/metabolism
- Enteroendocrine Cells/physiology*
- Cholinergic Neurons/metabolism
- Gastrointestinal Motility/physiology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/innervation
- Intestinal Mucosa/metabolism*
- TRPA1 Cation Channel/metabolism*
- Tryptophan/metabolism
- Zebrafish
- Animals, Genetically Modified
- Animals
- Zebrafish Proteins/genetics
- Proto-Oncogene Proteins c-ret/genetics
- Edwardsiella tarda/metabolism*
- Signal Transduction
- Enteric Nervous System/cytology
- Enteric Nervous System/metabolism*
- PubMed
- 33352109 Full text @ Cell Host Microbe
Citation
Ye, L., Bae, M., Cassilly, C.D., Jabba, S.V., Thorpe, D.W., Martin, A.M., Lu, H.Y., Wang, J., Thompson, J.D., Lickwar, C.R., Poss, K.D., Keating, D.J., Jordt, S.E., Clardy, J., Liddle, R.A., Rawls, J.F. (2020) Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host & Microbe. 29(2):179-196.e9.
Abstract
The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping