ZFIN ID: ZDB-PUB-110602-7
Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer
Varga, M., Maegawa, S., and Weinberg, E.S.
Date: 2011
Source: BMC Developmental Biology   11(1): 26 (Journal)
Registered Authors: Maegawa, Shingo, Varga, Máté, Weinberg, Eric
Keywords: none
MeSH Terms:
  • Animals
  • Body Patterning/physiology*
  • Bone Morphogenetic Proteins/genetics
  • Bone Morphogenetic Proteins/metabolism
  • Embryonic Induction/physiology
  • Female
  • Glycoproteins/metabolism
  • Intercellular Signaling Peptides and Proteins/metabolism
  • Mutation
  • Neural Plate/anatomy & histology*
  • Neural Plate/physiology
  • Organizers, Embryonic*
  • Signal Transduction/physiology
  • Wnt Proteins/genetics
  • Wnt Proteins/metabolism
  • Zebrafish/anatomy & histology*
  • Zebrafish/embryology*
  • Zebrafish/genetics
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/metabolism
PubMed: 21575247 Full text @ BMC Dev. Biol.


The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling.


Using the ventralized, maternal effect ichabod (ich) mutant, and by inhibiting BMP signaling in ich embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFbeta, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system.


Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of BMP signaling and the early organizer.