Morpholino
MO1-irf8
- ID
- ZDB-MRPHLNO-111212-2
- Name
- MO1-irf8
- Previous Names
-
- irf8 MOsp (1)
- Target
- Sequence
-
5' - AATGTTTCGCTTACTTTGAAAATGG - 3'
- Disclaimer
- Although ZFIN verifies reagent sequence data, we recommend that you conduct independent sequence analysis before ordering any reagent.
- Note
-
Splice-blocking MO.
- Genome Resources
- None
Target Location
Genomic Features
No data available
Expression
Gene expression in Wild Types + MO1-irf8
No data available
Phenotype
Phenotype resulting from MO1-irf8
1 - 5 of 8 Show all
Phenotype of all Fish created by or utilizing MO1-irf8
1 - 5 of 67 Show all
Citations
- Demy, D.L., Touret, A.L., Lancino, M., Tauzin, M., Capuana, L., Pierre, C., Herbomel, P. (2022) Trim33 conditions the lifespan of primitive macrophages and onset of definitive macrophage production. Development (Cambridge, England). 149(18):
- Zhang, X., Yang, Y., Wei, Y., Zhao, Q., Lou, X. (2022) Blf and drl cluster synergistically regulate cell fate commitment during zebrafish primitive hematopoiesis. Development (Cambridge, England). 149(24)
- Buchan, K.D., van Gent, M., Prajsnar, T.K., Ogryzko, N.V., de Jong, N.W.M., Kolata, J., Foster, S.J., van Strijp, J.A.G., Renshaw, S.A. (2021) Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. Journal of Cell Science. 134(5):
- Campbell, C.A., Fursova, O., Cheng, X., Snella, E., McCune, A., Li, L., Solchenberger, B., Schmid, B., Sahoo, D., Morton, M., Traver, D., Espín-Palazón, R. (2021) A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood advances. 5:796-811
- Klems, A., van Rijssel, J., Ramms, A.S., Wild, R., Hammer, J., Merkel, M., Derenbach, L., Préau, L., Hinkel, R., Suarez-Martinez, I., Schulte-Merker, S., Vidal, R., Sauer, S., Kivelä, R., Alitalo, K., Kupatt, C., van Buul, J.D., le Noble, F. (2020) The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models. Nature communications. 11:5319
- Prajsnar, T.K., Serba, J.J., Dekker, B.M., Gibson, J.F., Masud, S., Fleming, A., Johnston, S.A., Renshaw, S.A., Meijer, A.H. (2020) The autophagic response to Staphylococcus aureus provides an intracellular niche in neutrophils. Autophagy. 17(4):888-902
- Yang, L., Jiménez, J.A., Earley, A.M., Hamlin, V., Kwon, V., Dixon, C.T., Shiau, C.E. (2020) Drainage of inflammatory macromolecules from brain to periphery targets the liver for macrophage infiltration. eLIFE. 9:
- Masud, S., Prajsnar, T.K., Torraca, V., Lamers, G.E.M., Benning, M., Van Der Vaart, M., Meijer, A.H. (2019) Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy. 15(5):796-812
- van den Berg, M.C.W., MacCarthy-Morrogh, L., Carter, D., Morris, J., Ribeiro Bravo, I., Feng, Y., Martin, P. (2019) Proteolytic and Opportunistic Breaching of the Basement Membrane Zone by Immune Cells during Tumor Initiation. Cell Reports. 27:2837-2846.e4
- Rosowski, E.E., Raffa, N., Knox, B.P., Golenberg, N., Keller, N.P., Huttenlocher, A. (2018) Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS pathogens. 14:e1007229
1 - 10 of 36
Show