Ahmed, I., Ziab, M., Da'as, S., Hasan, W., Jeya, S.P., Aliyev, E., Nisar, S., Bhat, A.A., Fakhro, K.A., Alshabeeb Akil, A.S. (2023) Network-based identification and prioritization of key transcriptional factors of diabetic kidney disease. Computational and structural biotechnology journal. 21:716730716-730
|
Anderson, B.R., Howell, D.N., Soldano, K., Garrett, M.E., Katsanis, N., Telen, M.J., Davis, E.E., Ashley-Koch, A.E. (2015) In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress. PLoS Genetics. 11:e1005349
|
Anzenberger, U., Bit-Avragim, N., Rohr, S., Rudolph, F., Dehmel, B., Willnow, T.E., and Abdelilah-Seyfried, S. (2006) Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. Journal of Cell Science. 119(10):2127-2137
|
Arif, E., Kumari, B., Wagner, M.C., Zhou, W., Holzman, L.B., and Nihalani, D. (2013) Myo1c is an unconventional myosin required for zebrafish glomerular development. Kidney International. 84(6):1154-65
|
Bedell, V.M., Person, A.D., Larson, J.D., McLoon, A., Balciunas, D., Clark, K.J., Neff, K.I., Nelson, K.E., Bill, B.R., Schimmenti, L.A., Beiraghi, S., and Ekker, S.C. (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development (Cambridge, England). 139(4):793-804
|
Belcher, B., Vestal, J., Lane, S., Kell, M., Smith, L., Camarata, T. (2023) The zebrafish paralog six2b is required for early proximal pronephros morphogenesis. Scientific Reports. 13:1969919699
|
Bergeron, S.A., Milla, L.A., Villegas, R., Shen, M.C., Burgess, S.M., Allende, M.L., Karlstrom, R.O., and Palma, V. (2008) Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos. Genomics. 91(2):165-177
|
|
Boezio, G.L.M., Zhao, S., Gollin, J., Priya, R., Mansingh, S., Guenther, S., Fukuda, N., Gunawan, F., Stainier, D.Y.R. (2022) The developing epicardium regulates cardiac chamber morphogenesis by promoting cardiomyocyte growth. Disease models & mechanisms. 16(5):
|
Bollig, F., Mehringer, R., Perner, B., Hartung, C., Schafer, M., Schartl, M., Volff, J.N., Winkler, C., and Englert, C. (2006) Identification and comparative expression analysis of a second wt1 gene in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 235(2):554-561
|
Bollig, F., Perner, B., Besenbeck, B., Köthe, S., Ebert, C., Taudien, S., and Englert, C. (2009) A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development (Cambridge, England). 136(17):2883-2892
|
|
|
Chen, Q., Huang, S., Zhao, Q., Chen, R., and Zhang, A. (2011) Expression and function of the Ets transcription factor pea3 during formation of zebrafish pronephros. Pediatric nephrology (Berlin, Germany). 26(3):391-400
|
|
|
Choi, S.Y., Chacon-Heszele, M.F., Huang, L., McKenna, S., Wilson, F.P., Zuo, X., and Lipschutz, J.H. (2013) Cdc42 Deficiency Causes Ciliary Abnormalities and Cystic Kidneys. Journal of the American Society of Nephrology : JASN. 24(9):1435-50
|
|
|
|
Chu, S., Kwon, B.R., Lee, Y.M., Zoh, K.D., Choi, K. (2021) Effects of 2-ethylhexyl-4-methoxycinnamate (EHMC) on thyroid hormones and genes associated with thyroid, neurotoxic, and nephrotoxic responses in adult and larval zebrafish (Danio rerio). Chemosphere. 263:128176
|
Cianciolo Cosentino, C., Berto, A., Pelletier, S., Hari, M., Loffing, J., Neuhauss, S.C.F., Doye, V. (2019) Moderate Nucleoporin 133 deficiency leads to glomerular damage in zebrafish. Scientific Reports. 9:4750
|
Davidson, A.J., Ernst, P., Wang, Y., Dekens, M.P., Kingsley, P.D., Palis, J., Korsmeyer, S.J., Daley, G.Q., and Zon, L.I. (2003) cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature. 425(6955):300-306
|
de Groh, E.D., Swanhart, L.M., Cosentino, C.C., Jackson, R.L., Dai, W., Kitchens, C.A., Day, B.W., Smithgall, T.E., and Hukriede, N.A. (2010) Inhibition of Histone Deacetylase Expands the Renal Progenitor Cell Population. Journal of the American Society of Nephrology : JASN. 21(5):794-802
|
Del Pozo Cano, A., Manuel, R., Iglesias Gonzalez, A.B., Koning, H., Habicher, J., Zhang, H., Allalou, A., Kullander, K., Boije, H. (2020) Behavioural characterization of dmrt3a mutant zebrafish reveals crucial aspects of vertebrate locomotion through phenotypes related to acceleration. eNeuro. 7(3):
|
Diep, C.Q., Ma, D., Deo, R.C., Holm, T.M., Naylor, R.W., Arora, N., Wingert, R.A., Bollig, F., Djordjevic, G., Lichman, B., Zhu, H., Ikenaga, T., Ono, F., Englert, C., Cowan, C.A., Hukriede, N.A., Handin, R.I., and Davidson, A.J. (2011) Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature. 470(7332):95-100
|
Dong, L., Pietsch, S., Tan, Z., Perner, B., Sierig, R., Kruspe, D., Groth, M., Witzgall, R., Gröne, H., Platzer, M., Englert, C. (2015) Integration of Cistromic and Transcriptomic Analyses Identifies Nphs2, Mafb, and Magi2 as Wilms' Tumor 1 Target Genes in Podocyte Differentiation and Maintenance. Journal of the American Society of Nephrology : JASN. 26(9):2118-28
|
Drummond, B.E., Chambers, B.E., Wesselman, H.M., Gibson, S., Arceri, L., Ulrich, M.N., Gerlach, G.F., Kroeger, P.T., Leshchiner, I., Goessling, W., Wingert, R.A. (2022) osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2. Biomedicines. 10(11):
|
Drummond, I.A., Majumdar, A., Hentschel, H., Elger, M., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Stemple, D.L., Zwartkruis, F., Rangini, Z., Driever, W., and Fishman, M.C. (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development (Cambridge, England). 125:4655-4667
|
Dutta, S., Sriskanda, S., Boobalan, E., Alur, R.P., Elkahloun, A., Brooks, B.P. (2015) nlz1 Is required for cilia formation in zebrafish embryogenesis. Developmental Biology. 406(2):203-11
|
Ebarasi, L., He, L., Hultenby, K., Takemoto, M., Betsholtz, C., Tryggvason, K., and Majumdar, A. (2009) A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier. Developmental Biology. 334(1):1-9
|
Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
|
Estrada-Cuzcano, A., Etard, C., Delvallée, C., Stoetzel, C., Schaefer, E., Scheidecker, S., Geoffroy, V., Schneider, A., Studer, F., Mattioli, F., Chennen, K., Sigaudy, S., Plassard, D., Poch, O., Piton, A., Strahle, U., Muller, J., Dollfus, H. (2019) Novel IQCE variations confirm its role in postaxial polydactyly and cause ciliary defect phenotype in zebrafish. Human Mutation. 41(1):240-254
|
|
Ferrante, M.I., Romio, L., Castro, S., Collins, J.E., Goulding, D.A., Stemple, D.L., Woolf, A.S., and Wilson, S.W. (2009) Convergent Extension Movements and Ciliary Function are Mediated by ofd1, A Zebrafish Orthologue of the Human Oral-Facial-Digital Type 1 Syndrome Gene. Human molecular genetics. 18(2):289-303
|
Fogelgren, B., Lin, S.Y., Zuo, X., Jaffe, K.M., Park, K.M., Reichert, R.J., Bell, P.D., Burdine, R.D., and Lipschutz, J.H. (2011) The Exocyst Protein Sec10 Interacts with Polycystin-2 and Knockdown Causes PKD-Phenotypes. PLoS Genetics. 7(4):e1001361
|
Fédou, C., Camus, M., Lescat, O., Feuillet, G., Mueller, I., Ross, B., Buléon, M., Neau, E., Alves, M., Goudounéche, D., Breuil, B., Boizard, F., Bardou, Q., Casemayou, A., Tack, I., Dreux, S., Batut, J., Blader, P., Burlet-Schiltz, O., Decramer, S., Wirth, B., Klein, J., Saulnier-Blache, J.S., Buffin-Meyer, B., Schanstra, J.P. (2021) Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies Plastin 3 as a protein involved in glomerular integrity. The Journal of pathology. 254(5):575-588
|
Gates, M.A., Kim, L., Egan, E.S., Cardozo, T., Sirotkin, H.I., Dougan, S.T., Lashkari, D., Abagyan, R., Schier, A.F., and Talbot, W.S. (1999) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome research. 9(4):334-347
|
|
|
Gill, J.A., Lowe, L., Nguyen, J., Liu, P.P., Blake, T., Venkatesh, B., and Aplan, P.D. (2010) Enforced expression of simian virus 40 large T-antigen leads to testicular germ cell tumors in zebrafish. Zebrafish. 7(4):333-341
|
González-Rosa, J.M., Martín, V., Peralta, M., Torres, M., and Mercader, N. (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development (Cambridge, England). 138(9):1663-1674
|
Habicher, J., Manuel, R., Pedroni, A., Ferebee, C., Ampatzis, K., Boije, H. (2022) A new transgenic reporter line reveals expression of protocadherin 9 at a cellular level within the zebrafish central nervous system. Gene expression patterns : GEP. 44:119246
|
Hall, G., Gbadegesin, R.A., Lavin, P., Wu, G., Liu, Y., Oh, E.C., Wang, L., Spurney, R.F., Eckel, J., Lindsey, T., Homstad, A., Malone, A.F., Phelan, P.J., Shaw, A., Howell, D.N., Conlon, P.J., Katsanis, N., Winn, M.P. (2015) A Novel Missense Mutation of Wilms' Tumor 1 Causes Autosomal Dominant FSGS. Journal of the American Society of Nephrology : JASN. 26(4):831-43
|
|
Hopfenmüller, V.L., Perner, B., Reuter, H., Bates, T.J.D., Große, A., Englert, C. (2022) The Wilms Tumor Gene wt1a Contributes to Blood-Cerebrospinal Fluid Barrier Function in Zebrafish. Frontiers in cell and developmental biology. 9:809962
|
Horsfield, J., Ramachandran, A., Reuter, K., LaVallie, E., Collins-Racie, L., Crosier, K., and Crosier, P. (2002) Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development. Mechanisms of Development. 115(1-2):15-26
|
|
Huang, C.J., Wilson, V., Pennings, S., MacRae, C.A., and Mullins, J. (2013) Sequential effects of spadetail, one-eyed pinhead and no tail on midline convergence of nephric primordia during zebrafish embryogenesis. Developmental Biology. 384(2):290-300
|
Huang, L., Xiao, A., Choi, S.Y., Kan, Q., Zhou, W., Chacon-Heszele, M.F., Ryu, Y.K., McKenna, S., Zuo, X., Kuruvilla, R., Lipschutz, J.H. (2014) Wnt5a Is Necessary for Normal Kidney Development in Zebrafish and Mice. Nephron. Experimental nephrology. 128(1-2):80-8
|
Ichimura, K., Bubenshchikova, E., Powell, R., Fukuyo, Y., Nakamura, T., Tran, U., Oda, S., Tanaka, M., Wessely, O., Kurihara, H., Sakai, T., and Obara, T. (2012) A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS One. 7(9):e45286
|
Iglesias González, A.B., Jakobsson, J.E.T., Vieillard, J., Lagerström, M.C., Kullander, K., Boije, H. (2021) Single Cell Transcriptomic Analysis of Spinal Dmrt3 Neurons in Zebrafish and Mouse Identifies Distinct Subtypes and Reveal Novel Subpopulations Within the dI6 Domain. Frontiers in Cellular Neuroscience. 15:781197
|
|
Klein, J., Buffin-Meyer, B., Boizard, F., Moussaoui, N., Lescat, O., Breuil, B., Fedou, C., Feuillet, G., Casemayou, A., Neau, E., Hindryckx, A., Decatte, L., Levtchenko, E., Raaijmakers, A., Vayssière, C., Goua, V., Lucas, C., Perrotin, F., Cloarec, S., Benachi, A., Manca-Pellissier, M.C., Delmas, H.L., Bessenay, L., Le Vaillant, C., Allain-Launay, E., Gondry, J., Boudailliez, B., Simon, E., Prieur, F., Lavocat, M.P., Saliou, A.H., De Parscau, L., Bidat, L., Noel, C., Floch, C., Bourdat-Michel, G., Favre, R., Weingertner, A.S., Oury, J.F., Baudouin, V., Bory, J.P., Pietrement, C., Fiorenza, M., Massardier, J., Kessler, S., Lounis, N., Auriol, F.C., Marcorelles, P., Collardeau-Frachon, S., Zürbig, P., Mischak, H., Magalhães, P., Batut, J., Blader, P., Saulnier Blache, J.S., Bascands, J.L., Schaefer, F., Decramer, S., Schanstra, J.P., BIOMAN consortium (2020) Amniotic fluid peptides predict postnatal kidney survival in developmental kidney disease. Kidney International. 99(3):737-749
|
Kleinjan, D.A., Bancewicz, R.M., Gautier, P., Dahm, R., Schonthaler, H.B., Damante, G., Seawright, A., Hever, A.M., Yeyati, P.L., van Heyningen, V., and Coutinho, P. (2008) Subfunctionalization of Duplicated Zebrafish pax6 Genes by cis-Regulatory Divergence. PLoS Genetics. 4(2):e29
|
|
Kroeger, P.T., Drummond, B.E., Miceli, R., McKernan, M., Gerlach, G.F., Marra, A.N., Fox, A., McCampbell, K.K., Leshchiner, I., Rodriguez-Mari, A., BreMiller, R., Thummel, R., Davidson, A.J., Postlethwait, J., Goessling, W., Wingert, R.A. (2017) The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Developmental Biology. 428(1):148-163
|
|
Kur, E., Christa, A., Veth, K.N., Gajera, C.R., Andrade-Navarro, M.A., Zhang, J., Willer, J.R., Gregg, R.G., Abdelilah-Seyfried, S., Bachmann, S., Link, B.A., Hammes, A., and Willnow, T.E. (2011) Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development. Developmental Dynamics : an official publication of the American Association of Anatomists. 240(6):1567-1577
|
|
Lan, Y., Pan, H., Li, C., Banks, K.M., Sam, J., Ding, B., Elemento, O., Goll, M.G., Evans, T. (2019) TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Reports. 26:720-732.e4
|
Lee, S.L.J., Horsfield, J.A., Black, M.A., Rutherford, K., Fisher, A., Gemmell, N.J. (2017) Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development. BMC Genomics. 18:557
|
|
Lei, L., Yan, S.Y., Yang, R., Chen, J.Y., Li, Y., Bu, Y., Chang, N., Zhou, Q., Zhu, X., Li, C.Y., Xiong, J.W. (2017) Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic acids research. 45(6):3422-3436
|
Li, J., Liu, F., Lv, Y., Sun, K., Zhao, Y., Reilly, J., Zhang, Y., Tu, J., Yu, S., Liu, X., Qin, Y., Huang, Y., Gao, P., Jia, D., Chen, X., Han, Y., Shu, X., Luo, D., Tang, Z., Liu, M. (2021) Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic acids research. 49(4):2027-2043
|
Li, M., Li, Y., Weeks, O., Mijatovic, V., Teumer, A., Huffman, J.E., Tromp, G., Fuchsberger, C., Gorski, M., Lyytikäinen, L.P., Nutile, T., Sedaghat, S., Sorice, R., Tin, A., Yang, Q., Ahluwalia, T.S., Arking, D.E., Bihlmeyer, N.A., Böger, C.A., Carroll, R.J., Chasman, D.I., Cornelis, M.C., Dehghan, A., Faul, J.D., Feitosa, M.F., Gambaro, G., Gasparini, P., Giulianini, F., Heid, I., Huang, J., Imboden, M., Jackson, A.U., Jeff, J., Jhun, M.A., Katz, R., Kifley, A., Kilpeläinen, T.O., Kumar, A., Laakso, M., Li-Gao, R., Lohman, K., Lu, Y., Mägi, R., Malerba, G., Mihailov, E., Mohlke, K.L., Mook-Kanamori, D.O., Robino, A., Ruderfer, D., Salvi, E., Schick, U.M., Schulz, C.A., Smith, A.V., Smith, J.A., Traglia, M., Yerges-Armstrong, L.M., Zhao, W., Goodarzi, M.O., Kraja, A.T., Liu, C., Wessel, J., Boerwinkle, E., Borecki, I.B., Bork-Jensen, J., Bottinger, E.P., Braga, D., Brandslund, I., Brody, J.A., Campbell, A., Carey, D.J., Christensen, C., Coresh, J., Crook, E., Curhan, G.C., Cusi, D., de Boer, I.H., de Vries, A.P., Denny, J.C., Devuyst, O., Dreisbach, A.W., Endlich, K., Esko, T., Franco, O.H., Fulop, T., Gerhard, G.S., Glümer, C., Gottesman, O., Grarup, N., Gudnason, V., Harris, T.B., Hayward, C., Hocking, L., Hofman, A., Hu, F.B., Husemoen, L.L., Jackson, R.D., Jørgensen, T., Jørgensen, M.E., Kähönen, M., Kardia, S.L., König, W., Kooperberg, C., Kriebel, J., Launer, L.J., Lauritzen, T., Lehtimäki, T., Levy, D., Linksted, P., Linneberg, A., Liu, Y., Loos, R.J., Lupo, A., Meisinger, C., Melander, O., Metspalu, A., Mitchell, P., Nauck, M., Nürnberg, P., Orho-Melander, M., Parsa, A., Pedersen, O., Peters, A., Peters, U., Polasek, O., Porteous, D., Probst-Hensch, N.M., Psaty, B.M., Qi, L., Raitakari, O.T., Reiner, A.P., Rettig, R., Ridker, P.M., Rivadeneira, F., Rossouw, J.E., Schmidt, F., Siscovick, D., Soranzo, N., Strauch, K., Toniolo, D., Turner, S.T., Uitterlinden, A.G., Ulivi, S., Velayutham, D., Völker, U., Völzke, H., Waldenberger, M., Wang, J.J., Weir, D.R., Witte, D., Kuivaniemi, H., Fox, C.S., Franceschini, N., Goessling, W., Köttgen, A., Chu, A.Y. (2017) SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.. Journal of the American Society of Nephrology : JASN. 28(3):981-994
|
Liang, P., Jones, C.A., Bisgrove, B.W., Song, L., Glenn, S.T., Yost, H.J., and Gross, K.W. (2004) Genomic characterization and expression analysis of the first non-mammalian renin genes from zebrafish and pufferfish. Physiological Genomics. 16(3):314-322
|
Liu, C.T., Garnaas, M.K., Tin, A., Kottgen, A., Franceschini, N., Peralta, C.A., de Boer, I.H., Lu, X., Atkinson, E., Ding, J., Nalls, M., Shriner, D., Coresh, J., Kutlar, A., Bibbins-Domingo, K., Siscovick, D., Akylbekova, E., Wyatt, S., Astor, B., Mychaleckjy, J., Li, M., Reilly, M.P., Townsend, R.R., Adeyemo, A., Zonderman, A.B., de Andrade, M., Turner, S.T., Mosley, T.H., Harris, T.B., Rotimi, C.N., Liu, Y., Kardia, S.L., Evans, M.K., Shlipak, M.G., Kramer, H., Flessner, M.F., Dreisbach, A.W., Goessling, W., Cupples, L.A., Kao, W.L., Fox, C.S. (2011) Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function. PLoS Genetics. 7(9):e1002264
|
Liu, Y., Kassack, M.E., McFaul, M.E., Christensen, L.N., Siebert, S., Wyatt, S.R., Kamei, C.N., Horst, S., Arroyo, N., Drummond, I.A., Juliano, C.E., Draper, B.W. (2022) Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLIFE. 11:
|
|
Lopez-Baez, J.C., Simpson, D.J., LLeras Forero, L., Zeng, Z., Brunsdon, H., Salzano, A., Brombin, A., Wyatt, C., Rybski, W., Huitema, L.F.A., Dale, R.M., Kawakami, K., Englert, C., Chandra, T., Schulte-Merker, S., Hastie, N.D., Patton, E.E. (2018) Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair.. eLIFE. 7
|
|
|
|
Marques, I.J., Ernst, A., Arora, P., Vianin, A., Hetke, T., Sanz-Morejón, A., Naumann, U., Odriozola, A., Langa, X., Andrés-Delgado, L., Zuber, B., Torroja, C., Osterwalder, M., Simões, F., Englert, C., Mercader, N. (2022) WT1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development (Cambridge, England). 149(6):
|
|
|
Mitra, S., Lukianov, S., Ruiz, W.G., Cianciolo Cosentino, C., Sanker, S., Traub, L.M., Hukriede, N.A., and Apodaca, G. (2012) Requirement for a uroplakin 3a-like protein in the development of zebrafish pronephric tubule epithelial cell function, morphogenesis, and polarity. PLoS One. 7(7):e41816
|
Mo, D., Ihrke, G., Costa, S.A., Brilli, L., Labilloy, A., Halfter, W., Cosentino, C.C., Hukriede, N.A., and Weisz, O.A. (2012) Apical Targeting and Endocytosis of the Sialomucin Endolyn are Essential for Establishment of Zebrafish Pronephric Kidney Function. Journal of Cell Science. 125(22):5546-5554
|
Mudumana, S.P., Hentschel, D., Liu, Y., Vasilyev, A., and Drummond, I.A. (2008) odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development (Cambridge, England). 135(20):3355-3367
|
Navratilova, P., Fredman, D., Hawkins, T.A., Turner, K., Lenhard, B., and Becker, T.S. (2009) Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. Developmental Biology. 327(2):526-540
|
Nayar, S., Morrison, J.K., Giri, M., Gettler, K., Chuang, L.S., Walker, L.A., Ko, H.M., Kenigsberg, E., Kugathasan, S., Merad, M., Chu, J., Cho, J.H. (2021) A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease. Nature. 593(7858):275-281
|
|
Nishimura, Y., Ishii, T., Ando, K., Yuge, S., Nakajima, H., Zhou, W., Mochizuki, N., Fukuhara, S. (2022) Blood Flow Regulates Glomerular Capillary Formation in Zebrafish Pronephros. Kidney360. 3:700-713
|
O'Brien, L.L., Grimaldi, M., Kostun, Z., Wingert, R.A., Selleck, R., and Davidson, A.J. (2011) Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Developmental Biology. 358(2):318-30
|
|
Paredes-Zúñiga, S., Morales, R.A., Muñoz-Sánchez, S., Muñoz-Montecinos, C., Parada, M., Tapia, K., Rubilar, C., Allende, M.L., Peña, O.A. (2017) CXCL12a/CXCR4b acts to retain neutrophils in caudal hematopoietic tissue and to antagonize recruitment to an injury site in the zebrafish larva. Immunogenetics. 69(5):341-349
|
|
|
|
Pollitt, E.J.G., Sánchez-Posada, J., Snashall, C.M., Derrick, C.J., Noël, E.S. (2024) Llgl1 mediates timely epicardial emergence and establishment of an apical laminin sheath around the trabeculating cardiac ventricle. Development (Cambridge, England). 151(13):
|
Powell, R., Bubenshchikova, E., Fukuyo, Y., Hsu, C., Lakiza, O., Nomura, H., Renfrew, E., Garrity, D., Obara, T. (2016) Wtip is required for proepicardial organ specification and cardiac left/right asymmetry in zebrafish. Molecular Medicine Reports. 14(3):2665-78
|
Pradhan, A., Khalaf, H., Ochsner, S.A., Sreenivasan, R., Koskinen, J., Karlsson, M., Karlsson, J., McKenna, N.J., Orban, L., and Olsson, P.E. (2012) Activation of NF-kappaB prevents the transition from juvenile ovary to testis and promotes ovarian development in zebrafish. The Journal of biological chemistry. 287(45):37926-37938
|
|
Rider, S.A., Christian, H.C., Mullins, L.J., Howarth, A.R., MacRae, C.A., Mullins, J.J. (2017) Zebrafish mesonephric renin cells are functionally conserved and comprise of two distinct morphological populations. American journal of physiology. Renal physiology. 312(4):F778-F790
|
|
|
Sanz-Morejón, A., García-Redondo, A.B., Reuter, H., Marques, I.J., Bates, T., Galardi-Castilla, M., Große, A., Manig, S., Langa, X., Ernst, A., Piragyte, I., Botos, M.A., González-Rosa, J.M., Ruiz-Ortega, M., Briones, A.M., Salaices, M., Englert, C., Mercader, N. (2019) Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Reports. 28:1296-1306.e6
|
|
Schnerwitzki, D., Perner, B., Hoppe, B., Pietsch, S., Mehringer, R., Hänel, F., Englert, C. (2014) Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions. Developmental Biology. 393(1):24-32
|
|
|
Serluca, F.C., Xu, B., Okabe, N., Baker, K., Lin, S.Y., Sullivan-Brown, J., Konieczkowski, D.J., Jaffe, K.M., Bradner, J.M., Fishman, M.C., and Burdine, R.D. (2009) Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning. Development (Cambridge, England). 136(10):1621-1631
|
She, J., Wu, Y., Lou, B., Lodd, E., Klems, A., Schmoehl, F., Yuan, Z., Noble, F.L., Kroll, J. (2019) Genetic compensation by epob in pronephros development in epoa mutant zebrafish. Cell cycle (Georgetown, Tex.). 18(20):2683-2696
|
|
|
Siegerist, F., Lange, T., Iervolino, A., Koppe, T.M., Zhou, W., Capasso, G., Endlich, K., Endlich, N. (2021) Evaluation of endogenous miRNA reference genes across different zebrafish strains, developmental stages and kidney disease models. Scientific Reports. 11:22894
|
Sreenivasan, R., Cai, M., Bartfai, R., Wang, X., Christoffels, A., and Orban, L. (2008) Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS One. 3(3):e1791
|
Sreenivasan, R., Jiang, J., Wang, X., Bartfai, R., Kwan, H.Y., Christoffels, A., and Orban, L. (2014) Gonad Differentiation in Zebrafish Is Regulated by the Canonical Wnt Signaling Pathway. Biology of reproduction. 90(2):45
|
Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
|
Sun, D., Zhang, Y., Wang, C., Hua, X., Zhang, X.A., and Yan, J. (2013) Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death & Disease. 4:e930
|
|
Tian, J., Shao, J., Liu, C., Hou, H.Y., Chou, C.W., Shboul, M., Li, G.Q., El-Khateeb, M., Samarah, O.Q., Kou, Y., Chen, Y.H., Chen, M.J., Lyu, Z., Chen, W.L., Chen, Y.F., Sun, Y.H., Liu, Y.W. (2018) Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged-Notch signaling in fin and limb development. Cellular and molecular life sciences : CMLS. 76(1):163-178
|
|
|
Vasilyev, A., Liu, Y., Mudumana, S., Mangos, S., Lam, P.Y., Majumdar, A., Zhao, J., Poon, K.L., Kondrychyn, I., Korzh, V., and Drummond, I.A. (2009) Collective Cell Migration Drives Morphogenesis of the Kidney Nephron. PLoS Biology. 7(1):e9
|
|
|
|
Weber, S., Taylor, J.C., Winyard, P., Baker, K.F., Sullivan-Brown, J., Schild, R., Knüppel, T., Zurowska, A.M., Caldas-Alfonso, A., Litwin, M., Emre, S., Ghiggeri, G.M., Bakkaloglu, A., Mehls, O., Antignac, C., Schaefer, F., and Burdine, R.D. (2008) SIX2 and BMP4 Mutations Associate With Anomalous Kidney Development. Journal of the American Society of Nephrology : JASN. 19(5):891-903
|
Weidinger, G., Wolke, U., Köprunner, M., Thisse, C., Thisse, B. and Raz, E. (2002) Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development (Cambridge, England). 129:25-36
|
|
|
Wingert, R.A., Selleck, R., Yu, J., Song, H.D., Chen, Z., Song, A., Zhou, Y., Thisse, B., Thisse, C., McMahon, A.P., and Davidson, A.J. (2007) The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros. PLoS Genetics. 3(10):1922-1938
|
Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
|
|
Xia, H., Zhong, C., Wu, X., Chen, J., Tao, B., Xia, X., Shi, M., Zhu, Z., Trudeau, V.L., Hu, W. (2017) Mettl3 Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish.. Genetics. 208(2):729-743
|
Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., Zhu, Z., Lin, S., and Zhang, B. (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic acids research. 41(14):e141
|
|
Xiong, S., Ma, W., Jing, J., Zhang, J., Dan, C., Gui, J.F., Mei, J. (2018) An miR-200 cluster on chromosome 23 regulates sperm motility in zebrafish. Endocrinology. 159(5):1982-1991
|
Xiong, S., Tian, J., Ge, S., Li, Z., Long, Z., Guo, W., Huang, P., He, Y., Xiao, T., Gui, J.F., Mei, J. (2020) The miRNA-200 cluster on chromosome 23 is required for oocyte maturation and ovulation in zebrafish. Biology of reproduction. 103(4):769-778
|
Yang, Y.J., Wang, Y., Li, Z., Zhou, L., Gui, J.F. (2017) Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish.. Genetics. 205(4):1551-1572
|
Zennaro, C., Mariotti, M., Carraro, M., Pasqualetti, S., Corbelli, A., Armelloni, S., Li, M., Ikehata, M., Clai, M., Artero, M., Messa, P., Boscutti, G., Rastaldi, M.P. (2014) Podocyte developmental defects caused by adriamycin in zebrafish embryos and larvae: a novel model of glomerular damage. PLoS One. 9:e98131
|
|