FIGURE SUMMARY
Title

Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle Activity Dependent hspb11 Expression

Authors
Klüver, N., Yang, L., Busch, W., Scheffler, K., Renner, P., Strähle, U., and Scholz, S.
Source
Full text @ PLoS One

ZFIN is incorporating published figure images and captions as part of an ongoing project. Figures from some publications have not yet been curated, or are not available for display because of copyright restrictions.

EXPRESSION / LABELING:
Genes:
Fish:
Anatomical Terms:
Stage: Prim-5
PHENOTYPE:
Fish:
Observed In:
Stage: Prim-5

Repression of AChE activity with APM resulted in a reduced birefringence.

(A) Wild-type zebrafish embryo axial musculature is highly birefringent at 72 hpf. (B) APM [6 µM] exposure from 12–72 hpf resulted in defects in the axial musculature, which are shown by a reduced birefringence at 72 hpf.

APM concentration dependent induction of <italic>hspb11</italic>, <italic>pdlim3b</italic> and <italic>socs3a</italic> in zebrafish embryos.

APM exposures for (A) 24 h (26–50 hpf) and (B) 2 h (48–50 hpf). Concentrations are given in µM. Bars represent the relative gene expression as fold change of the respective untreated control as mean ± standard deviation of three independent replicate exposures. Control  =  ctrl. * P<0.05.

APM mediated <italic>hspb11</italic> induction depends on nAChR activity and increased intracellular calcium levels.

(A) hspb11 expression analysis in ache and sopfixe−/− zebrafish mutant embryos at 48 hpf. (B) hspb11 expression in sopfixe null mutants and siblings (+/?  =  heterozygous and wildtype) after APM (6 µM) exposure (26–50 hpf). (C) 1 µM Thapsigargin (TG) and 2 mM caffeine (CAF) induce hspb11 expression in zebrafish embryos (exposure period 48–50 hpf). Bars represent the relative gene expression as fold change of the respective untreated control as mean ± standard deviation of three independent replicate exposures Control  =  ctrl. * P<0.05.

Developmental <italic>hspb11</italic> expression pattern in wildtype, APM exposed, <italic>ache</italic> and <italic>sop<sup>fixe</sup></italic> mutant embryos.

Expression pattern of hspb11 at 18 hpf were detected in developing adaxial musculature (A–A″). During later developmental stages, at 24 hpf, hspb11 mRNA transcripts were restricted to muscle pioneers (B and B′) and became only expressed in the notochord at 50 hpf (C). (A, B) lateral view, (A′) dorsal view and (A″ and B′) cross sections. Increased expression pattern in axial musculature was observed in APM exposed (D) and homozygous (−/−) ache mutant embryos (E). Hspb11 expression in homozygous sopfixe−/− embryos (F and G) and heterozygous/wildtype (+/?) siblings (H and I).

Blocking the skeletal muscle contraction with MS-222 inhibits developmental <italic>hspb11</italic> expression.

(A) qPCR hspb11 expression analysis. (B) Wildtype hspb11 expression pattern at 24 hpf. (C) MS222 treatment results in the loss of hspb11 expression pattern at 24 hpf.

Knockdown of Hspb11 results in slow muscle myosin disorganization in skeletal muscles.

(A, D and G) mmMO-hspb11 injected embryos. (B, E and H) MO(ATG)-hspb11 morphants. (C, F and I) MO(UTR)-hspb11 morphants. (A–C) Phenotypic observations of morpholino injected embryos at 48 hpf. (D–E) Muscle organization determined with birefringence at 72 hpf. (G–I) Slow muscle myosin distribution at 72 hpf shown by immunofluorescence staining with antibody F59. Arrows indicate gaps in fiber distribution.

Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS One