Anderson, J.L., Mulligan, T.S., Shen, M.C., Wang, H., Scahill, C.M., Tan, F.J., Du, S.J., Busch-Nentwich, E.M., Farber, S.A. (2017) mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS Genetics. 13:e1007105
|
|
Chen, Z., He, M., Wang, H., Li, X., Qin, R., Ye, D., Zhai, X., Zhu, J., Zhang, Q., Hu, P., Shui, G., Sun, Y. (2024) Intestinal DHA-PA-PG axis promotes digestive organ expansion by mediating usage of maternally deposited yolk lipids. Nature communications. 15:97699769
|
|
|
|
|
Du, Q., Shao, R., Wang, W., Zhang, H., Liao, X., Wang, Z., Yin, Z., Ai, Q., Mai, K., Tang, X., Wan, M. (2024) Vitamin D3 Regulates Energy Homeostasis under Short-Term Fasting Condition in Zebrafish (Danio Rerio). Nutrients. 16(9):
|
Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
|
Encinas, P., Rodriguez-Milla, M.A., Novoa, B., Estepa, A., Figueras, A., and Coll, J. (2010) Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genomics. 11:518
|
Fei, F., Sun, S., Li, Q., Pei, Z., Wang, L., Zhang, R., Luo, F., Yu, M., Wang, X. (2020) Combinatorial normalization of liver-derived cytokine pathways alleviates hepatic tumor-associated cachexia in zebrafish. Cancer research. 81(4):873-884
|
Fink, I.R., Benard, E.L., Hermsen, T., Meijer, A.H., Forlenza, M., Wiegertjes, G.F. (2015) Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp. Molecular immunology. 63(2):381-93
|
Freeburg, S.H., Shwartz, A., Kemény, L.V., Smith, C.J., Weeks, O., Miller, B.M., PenkoffLidbeck, N., Fisher, D.E., Evason, K.J., Goessling, W. (2024) Hepatocyte vitamin D receptor functions as a nutrient sensor that regulates energy storage and tissue growth in zebrafish. Cell Reports. 43:114393114393
|
Gao, Y., Jin, Q., Gao, C., Chen, Y., Sun, Z., Guo, G., Peng, J. (2022) Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells. 11(20):
|
Gu, Q., Yang, X., Lin, L., Li, S., Li, Q., Zhong, S., Peng, J., Cui, Z. (2014) Genetic ablation of solute carrier family 7a3a leads to hepatic steatosis in zebrafish during fasting. Hepatology (Baltimore, Md.). 60(6):1929-41
|
Guggeri, L., Sosa-Redaelli, I., Cárdenas-Rodríguez, M., Alonso, M., González, G., Naya, H., Prieto-Echagüe, V., Lepanto, P., Badano, J.L. (2024) Follistatin like-1 (Fstl1) regulates adipose tissue development in zebrafish. Adipocyte. 13:24358622435862
|
|
Her, G.M., Hsu, C.C., Hong, J.R., Lai, C.Y., Hsu, M.C., Pang, H.W., Chan, S.K., and Pai, W.Y. (2011) Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochimica et biophysica acta. Molecular and cell biology of lipids. 1811(9):536-48
|
|
Huang, Y., Chen, Y., Xie, H., Feng, Y., Chen, S., Bao, B. (2024) Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. Biology. 13(6):
|
Jones, K.S., Alimov, A.P., Rilo, H.L., Jandacek, R.P., Woollett, L.A., and Penberthy, W.T. (2008) A High Throughput Live Transparent Animal Bioassay to Identify Non-toxic Small Molecules or Genes that Regulate Vertebrate Fat Metabolism for Obesity Drug Development. Nutrition & metabolism. 5:23
|
Keatinge, M., Tsarouchas, T.M., Munir, T., Porter, N.J., Larraz, J., Gianni, D., Tsai, H.H., Becker, C.G., Lyons, D.A., Becker, T. (2021) CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genetics. 17:e1009515
|
Le Mentec, H., Monniez, E., Legrand, A., Monvoisin, C., Lagadic-Gossmann, D., Podechard, N. (2023) A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. International Journal of Molecular Sciences. 24(4):
|
Levic, D.S., Ryan, S., Marjoram, L., Honeycutt, J., Bagwell, J., Bagnat, M. (2020) Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. The Journal of cell biology. 219(4):
|
Li, J.M., Li, L.Y., Qin, X., Degrace, P., Demizieux, L., Limbu, S.M., Wang, X., Zhang, M.L., Li, D.L., Du, Z.Y. (2018) Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish. Frontiers in Physiology. 9:509
|
Li, J.M., Li, L.Y., Qin, X., Ning, L.J., Lu, D.L., Li, D.L., Zhang, M.L., Wang, X., Du, Z.Y. (2017) Systemic regulation of L-carnitine in nutritional metabolism in zebrafish, Danio rerio. Scientific Reports. 7:40815
|
Li, X., Xue, Y., Pang, L., Len, B., Lin, Z., Huang, J., ShangGuan, Z., Pan, Y. (2018) Agaricus bisporus-derived β-glucan prevents obesity through PPAR γ downregulation and autophagy induction in zebrafish fed by chicken egg yolk. International journal of biological macromolecules. 125:820-828
|
Li, Y., Huang, R., Chen, L., Li, Y., Li, Y., Liao, L., He, L., Zhu, Z., Wang, Y. (2021) Characterization of SR-B2a and SR-B2b genes and their ability to promote GCRV infection in grass carp (Ctenopharyngodon idellus). Developmental and comparative immunology. 124:104202
|
Liu, H., Xu, Y., Wang, Y., Zhong, S., Wang, M., Lin, P., Li, H., Liu, Z. (2017) Cd36 is a candidate lipid sensor involved in the sensory detection of fatty acid in zebrafish. Physiology & behavior. 182:34-39
|
Liu, K., Xu, Y., Wang, Y., Wei, S., Feng, D., Huang, Q., Zhang, S., Liu, Z. (2016) Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish. Developmental and comparative immunology. 60:91-5
|
Lu, J.W., Yang, W.Y., Lin, Y.M., Jin, S.L., and Yuh, C.H. (2013) Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta histochemica. 115(7):728-39
|
|
|
Miklas, J.W., Levy, S., Hofsteen, P., Mex, D.I., Clark, E., Muster, J., Robitaille, A.M., Sivaram, G., Abell, L., Goodson, J.M., Pranoto, I., Madan, A., Chin, M.T., Tian, R., Murry, C.E., Moon, R.T., Wang, Y., Ruohola-Baker, H. (2021) Amino acid primed mTOR activity is essential for heart regeneration. iScience. 25:103574
|
Nussbaum, J.M., Liu, L.J., Hasan, S.A., Schaub, M., McClendon, A., Stainier, D.Y., and Sakaguchi, T.F. (2013) Homeostatic generation of reactive oxygen species protects the zebrafish liver from steatosis. Hepatology (Baltimore, Md.). 58(4):1326-1338
|
Pai, W.Y., Hsu, C.C., Lai, C.Y., Chang, T.Z., Tsai, Y.L., and Her, G.M. (2013) Cannabinoid receptor 1 promotes hepatic lipid accumulation and lipotoxicity through the induction of SREBP-1c expression in zebrafish. Transgenic Research. 22(4):823-38
|
Park, J., Levic, D.S., Sumigray, K.D., Bagwell, J., Eroglu, O., Block, C.L., Eroglu, C., Barry, R., Lickwar, C.R., Rawls, J.F., Watts, S.A., Lechler, T., Bagnat, M. (2019) Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Developmental Cell. 51(1):7-20.e6
|
|
|
|
|
Shi, G., Cui, Q., Wang, J., Guo, H., Pan, Y., Sheng, N., Guo, Y., Dai, J. (2019) Chronic exposure to 6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring. Environmental pollution (Barking, Essex : 1987). 249:550-559
|
Shieh, Y.S., Chang, Y.S., Hong, J.R., Chen, L.J., Jou, L.K., Hsu, C.C., and Her, G.M. (2010) Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochimica et biophysica acta. Molecular and cell biology of lipids. 1801(7):721-730
|
Singh, M.K., Jayarajan, R., Varshney, S., Upadrasta, S., Singh, A., Yadav, R., Scaria, V., Sengupta, S., Shanmugam, D., Shalimar, ., Sivasubbu, S., Gandotra, S., Sachidanandan, C. (2021) Chronic systemic exposure to IL6 leads to deregulation of glycolysis and fat accumulation in the zebrafish liver. Biochimica et biophysica acta. Molecular and cell biology of lipids. 1866(5):158905
|
|
Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
|
Sulliman, N.C., Ghaddar, B., Gence, L., Patche, J., Rastegar, S., Meilhac, O., Diotel, N. (2021) HDL biodistribution and brain receptors in zebrafish, using HDLs as vectors for targeting endothelial cells and neural progenitors. Scientific Reports. 11:6439
|
Sun, L., Ling, Y., Jiang, J., Wang, D., Wang, J., Li, J., Wang, X., Wang, H. (2020) Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. Chemosphere. 251:126318
|
Sun, S.X., Wu, J.L., Lv, H.B., Zhang, H.Y., Zhang, J., Limbu, S.M., Qiao, F., Chen, L.Q., Yang, Y., Zhang, M.L., Du, Z.Y. (2020) Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways. Journal of hazardous materials. 394:122537
|
Sun, S.X., Zhang, Y.N., Lu, D.L., Wang, W.L., Limbu, S.M., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2019) Concentration-dependent effects of 17β-estradiol and bisphenol A on lipid deposition, inflammation and antioxidant response in male zebrafish (Danio rerio). Chemosphere. 237:124422
|
Sun, W., Zhang, X., Qiao, Y., Griffin, N., Zhang, H., Wang, L., Liu, H. (2023) Exposure to PFOA and its novel analogs disrupts lipid metabolism in zebrafish. Ecotoxicology and environmental safety. 259:115020115020
|
Verwilligen, R.A.F., Mulder, L., Rodenburg, F.J., Van Dijke, A., Hoekstra, M., Bussmann, J., Van Eck, M. (2022) Stabilin 1 and 2 are important regulators for cellular uptake of apolipoprotein B-containing lipoproteins in zebrafish. Atherosclerosis. 346:18-25
|
Wang, B., Liu, L., Li, Y., Zou, J., Li, D., Zhao, D., Li, W., Sun, W. (2021) Ustilaginoidin D induces hepatotoxicity and behaviour aberrations in zebrafish larvae. Toxicology. 456:152786
|
Wang, W., Ru, S., Wang, L., Qin, J., Ru, Y., Zhang, J., Zhang, X. (2020) Bisphenol S induces ectopic angiogenesis in embryos via VEGFR2 signaling, leading to lipid deposition in blood vessels of larval zebrafish. Environmental science & technology. 54(11):6822-6831
|
Wang, W., Zhang, J., Li, Z., Gu, J., Qin, J., Li, J., Zhang, X., Ru, S. (2021) Bisphenol S exposure accelerates the progression of atherosclerosis in zebrafish embryo-larvae. Journal of hazardous materials. 426:128042
|
Xiang, D., Qiao, K., Song, Z., Shen, S., Wang, M., Wang, Q. (2019) Enantioselectivity of toxicological responses induced by maternal exposure of cis-bifenthrin enantiomers in zebrafish (Danio rerio) larvae. Journal of hazardous materials. 371:655-665
|
Xu, H., Jiang, Y., Miao, X.M., Tao, Y.X., Xie, L., Li, Y. (2021) A Model Construction of Starvation Induces Hepatic Steatosis and Transcriptome Analysis in Zebrafish Larvae. Biology. 10(2):
|
Ye, L., Mueller, O., Bagwell, J., Bagnat, M., Liddle, R.A., Rawls, J.F. (2019) High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLIFE. 8:
|
Yeh, K.Y., Lai, C.Y., Lin, C.Y., Hsu, C.C., Lo, C.P., Her, G.M. (2017) ATF4 overexpression induces early onset of hyperlipidaemia and hepatic steatosis and enhances adipogenesis in zebrafish. Scientific Reports. 7:16362
|
|
Yu, L., He, M., Liu, S., Dou, X., Li, L., Gu, N., Li, B., Liu, Z., Wang, G., Fan, J. (2021) Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS applied materials & interfaces. 13(46):54677-54689
|
Zhang, F.L., Yang, Y.L., Zhang, Z., Yao, Y.Y., Xia, R., Gao, C.C., Du, D.D., Hu, J., Ran, C., Liu, Z., Zhou, Z.G. (2021) Surface-Displayed Amuc_1100 From Akkermansia muciniphila on Lactococcus lactis ZHY1 Improves Hepatic Steatosis and Intestinal Health in High-Fat-Fed Zebrafish. Frontiers in nutrition. 8:726108
|
Zhang, J., Sun, P., Kong, T., Yang, F., Guan, W. (2016) Tributyltin promoted hepatic steatosis in zebrafish (Danio rerio) and the molecular pathogenesis involved. Aquatic toxicology (Amsterdam, Netherlands). 170:208-215
|
Zhao, F., He, J., Tang, J., Cui, N., Shi, Y., Li, Z., Liu, S., Wang, Y., Ma, M., Zhao, C., Luo, L., Li, L. (2022) Brain milieu induces early microglial maturation through the BAX-Notch axis. Nature communications. 13:6117
|
|
|
Zheng, X., Dai, W., Chen, X., Wang, K., Zhang, W., Liu, L., Hou, J. (2015) Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. Journal of Biomedical Science. 22:105
|
Zhu, Y., Tan, Q., Zhang, L., Yao, J., Zhou, H., Hu, P., Liang, X., Liu, H. (2019) The migration of docosahexenoic acid (DHA) to the developing ovary of female zebrafish (Danio rerio). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 233:97-105
|