Fig. 1

Caron et al., 2012 - Wnt/β-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer’s vesicle
Other Figures
All Figure Page
Back to All Figure Page
Fig. 1

Wnt/β-catenin signaling regulates LR asymmetry KV cell-autonomously. (A-C) fzd10 expression pattern. Shown are a lateral view of 80% epiboly (A), and lateral (B) and dorsal (C) views of the tail bud region of 10-somite staged zebrafish embryos with anterior to the left. Arrow, DFCs; arrowhead, KV. (D) Western blot showing diminished Fzd10 level in fzd10 morphants. Actin was used as a loading control. (E-H) fzd10 transduces Wnt/β-catenin signaling. DFC-specific injection of fzd10 MO depleted sp5l expression from DFCs (F). Knockdown of Fzd10 resulted in downregulation of axin2 expression (H). Shown are lateral views of 80% epiboly (E,F) and 10-somite (G,H) staged embryos. Arrow indicates DFCs. (I) Representative images of spaw expression (bracket) in DFCfzd10 MO embryos at the 21-somite stage. (J) DFC/KV-specific reduction of Wnt/β-catenin signaling randomizes spaw expression. Percentages of spaw expression were determined in 21-somite staged embryos. MO (ng), amount of MO used; N, number of embryos examined. L, left-side; R, right-side; A, absence; B, bilateral. *P<0.01 compared with corresponding modulations in the yolk only or with uninjected controls.

Expression Data
Knockdown Reagent:
Anatomical Terms:
Stage Range: 75%-epiboly to Prim-5

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Development