FIGURE

Fig 2

ID
ZDB-FIG-211018-18
Publication
Karim et al., 2021 - Heterodimer-heterotetramer formation mediates enhanced sensor activity in a biophysical model for BMP signaling
Other Figures
All Figure Page
Back to All Figure Page
Fig 2

Oligomerization kinetics do not explain heterodimer-heterotetramer dominance.

A. Proportion of ligand-receptor tetrameric complexes at equimolar receptor at physiological conditions. The heterodimer-heterotetramer is only the fourth most abundant tetrameric complex. B. Proportion of ligand-receptor tetrameric complexes in a simulation with no homodimer ligand. Heterodimer-heterotetramer production is still not kinetically favored. C. Visualization of the prevalence of heterodimer-heterotetramer compared to other ligand-receptor tetramers in 3,375 points of a 84,375 point screen. The red region represents parameter space in which the heterodimer-heterotetramer is the most prevalent species (3.84% of this sample. D. The portion of the parameter space in which each ligand-receptor tetrameric complex is the most abundant. E. The portion of the parameter space in which the heterodimer-heterotetramer is the most abundant ligand-receptor tetrameric complex (5.66%) and the predominant tetrameric complex (0.0%).

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Comput. Biol.