ZFIN ID: ZDB-LAB-100121-1
Waxman Lab
PI/Director: Waxman, Joshua
Contact Person: Waxman, Joshua
Email: Joshua.Waxman@cchmc.org
Address: Molecular Cardiovascular Biology Division Cincinnati Children's Hospital Medical Center 240 Albert Sabin Way MLC 7020, S4.347 Cincinnati, OH 45229
Country: United States
Phone: 513-636-7232
Line Designation: ci

Show all 14 genomic features



Perl, E., Ravisankar, P., Beerens, M.E., Mulahasanovic, L., Smallwood, K., Sasso, M.B., Wenzel, C., Ryan, T.D., Komár, M., Bove, K.E., MacRae, C.A., Weaver, K.N., Prada, C.E., Waxman, J.S. (2022) Stx4 is required to regulate cardiomyocyte Ca2+ handling during vertebrate cardiac development. HGG advances. 3:100115
Falkenberg, L.G., Beckman, S.A., Ravisankar, P., Dohn, T.E., Waxman, J.S. (2021) Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. Disease models & mechanisms. 14(5):
Duong, T.B., Holowiecki, A., Waxman, J.S. (2021) Retinoic acid signaling restricts the size of the first heart field within the anterior lateral plate mesoderm. Developmental Biology. 473:119-129
Martin, K.E., Waxman, J.S. (2021) Atrial and Sinoatrial Node Development in the Zebrafish Heart. Journal of cardiovascular development and disease. 8(2):
Holowiecki, A., Linstrum, K., Ravisankar, P., Chetal, K., Salomonis, N., Waxman, J.S. (2020) Pbx4 limits heart size and fosters arch artery formation through partitioning second heart field progenitors and restricting proliferation. Development (Cambridge, England). 147(5):
Perl, E., Waxman, J.S. (2020) Retinoic Acid Signaling and Heart Development. Sub-cellular biochemistry. 95:119-149
Song, Y.C., Dohn, T.E., Rydeen, A.B., Nechiporuk, A.V., Waxman, J.S. (2019) HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genetics. 15:e1008165
Skvarca, L.B., Han, H.I., Espiritu, E.B., Missinato, M.A., Rochon, E.R., McDaniels, M.D., Bais, A.S., Roman, B.L., Waxman, J.S., Watkins, S.C., Davidson, A.J., Tsang, M., Hukriede, N.A. (2019) Enhancing acute kidney injury regeneration by promoting cellular dedifferentiation in zebrafish. Disease models & mechanisms. 12(4):
D'Aniello, E., Iannotti, F.A., Falkenberg, L.G., Martella, A., Gentile, A., De Maio, F., Ciavatta, M.L., Gavagnin, M., Waxman, J.S., Di Marzo, V., Amodeo, P., Vitale, R.M. (2019) In Silico Identification and Experimental Validation of (-)-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator. Marine drugs. 17(2)
Dohn, T.E., Ravisankar, P., Tirera, F.T., Martin, K.E., Gafranek, J.T., Duong, T.B., VanDyke, T.L., Touvron, M., Barske, L.A., Crump, J.G., Waxman, J.S. (2019) Nr2f-dependent allocation of ventricular cardiomyocyte and pharyngeal muscle progenitors. PLoS Genetics. 15:e1007962
Pogoda, H.M., Riedl-Quinkertz, I., Löhr, H., Waxman, J.S., Dale, R.M., Topczewski, J., Schulte-Merker, S., Hammerschmidt, M. (2018) Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development. Development (Cambridge, England). 145(9)
Duong, T.B., Ravisankar, P., Song, Y.C., Gafranek, J.T., Rydeen, A.B., Dohn, T.E., Barske, L.A., Crump, J.G., Waxman, J.S. (2017) Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Developmental Biology. 434(1):7-14
Mandal, A., Holowiecki, A., Song, Y.C., Waxman, J.S. (2017) Wnt signaling balances specification of the cardiac and pharyngeal muscle fields. Mechanisms of Development. 143:32-41
Rydeen, A.B., Waxman, J.S. (2016) Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity. PLoS Biology. 14:e2000504
D'Aniello, E., Ravisankar, P., Waxman, J.S. (2015) Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis. PLoS One. 10:e0138588
Rydeen, A., Voisin, N., D'Aniello, E., Ravisankar, P., Devignes, C.S., Waxman, J.S. (2015) Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling. Developmental Biology. 405(1):47-55
D'Aniello, E., Waxman, J.S. (2015) Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Developmental dynamics : an official publication of the American Association of Anatomists. 244(3):513-23
Mandal, A., Waxman, J. (2014) Retinoic acid negatively regulates dact3b expression in the hindbrain of zebrafish embryos. Gene expression patterns : GEP. 16(2):122-9
Rydeen, A.B., Waxman, J.S. (2014) Cyp26 enzymes are required to balance the cardiac and vascular lineages within the anterior lateral plate mesoderm. Development (Cambridge, England). 141:1638-48
Sorrell, M.R., Dohn, T.E., D'Aniello, E., and Waxman, J.S. (2013) Tcf7l1 proteins cell autonomously restrict cardiomyocyte and promote endothelial specification in zebrafish. Developmental Biology. 380(2):199-210
Mandal, A., Rydeen, A., Anderson, J., Sorrell, M.R., Zygmunt, T., Torres-Vazquez, J., and Waxman, J.S. (2013) Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid. Developmental dynamics : an official publication of the American Association of Anatomists. 242(8):989-1000
D'Aniello, E., Rydeen, A.B., Anderson, J.L., Mandal, A., and Waxman, J.S. (2013) Depletion of Retinoic Acid Receptors Initiates a Novel Positive Feedback Mechanism that Promotes Teratogenic Increases in Retinoic Acid. PLoS Genetics. 9(8):e1003689
Dohn, T.E., and Waxman, J.S. (2012) Distinct phases of Wnt/β-catenin signaling direct cardiomyocyte formation in zebrafish. Developmental Biology. 361(2):364-76
Sorrell, M.R., and Waxman, J.S. (2011) Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation. Developmental Biology. 358(1):44-55
Waxman, J.S., and Yelon, D. (2011) Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Developmental Biology. 352(1):128-140
Waxman, J.S., and Yelon, D. (2009) Increased Hox activity mimics the teratogenic effects of excess retinoic acid signaling. Developmental dynamics : an official publication of the American Association of Anatomists. 238(5):1207-1213
Linville, A., Radtke, K., Waxman, J.S., Yelon, D., and Schilling, T.F. (2009) Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches. Developmental Biology. 325(1):60-70
Waxman, J.S., Keegan, B.R., Roberts, R.W., Poss, K.D., and Yelon, D. (2008) Hoxb5b acts downstream of retinoic Acid signaling in the forelimb field to restrict heart field potential in zebrafish. Developmental Cell. 15(6):923-934
Waxman, J.S., and Yelon, D. (2007) Comparison of the expression patterns of newly identified zebrafish retinoic acid and retinoid X receptors. Developmental dynamics : an official publication of the American Association of Anatomists. 236(2):587-595
Waxman, J.S. (2005) Regulation of the early expression patterns of the zebrafish Dishevelled-interacting proteins Dapper1 and Dapper2. Developmental dynamics : an official publication of the American Association of Anatomists. 233(1):194-200
Waxman, J.S., Hocking, A.M., Stoick, C.L., and Moon, R.T. (2004) Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development (Cambridge, England). 131(23):5909-5921
Waxman, J.S. (2004) Functions of the Dapper family of Dishevelled-interacting proteins in Xenopus and zebrafish. Ph.D. Thesis. :177p
Lekven, A.C., Thorpe, C.J., Waxman, J.S., and Moon, R.T. (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Developmental Cell. 1(1):103-114