Gene
crb3a
- ID
- ZDB-GENE-060610-2
- Name
- crumbs homolog 3a
- Symbol
- crb3a Nomenclature History
- Previous Names
- None
- Type
- protein_coding_gene
- Location
- Chr: 3 Mapping Details/Browsers
- Description
- Acts upstream of or within inner ear auditory receptor cell differentiation and regulation of non-motile cilium assembly. Predicted to be located in membrane. Is expressed in brain; eye; gut; otic vesicle; and photoreceptor cell. Orthologous to human CRB3 (crumbs cell polarity complex component 3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 3 figures from Hazime et al., 2017
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-crb3a | N/A | (2) |
MO2-crb3a | N/A | Omori et al., 2006 |
TALEN1-crb3a | Hazime et al., 2017 |
1 - 3 of 3
Show
Human Disease
Domain, Family, and Site Summary
No data available
Domain Details Per Protein
Protein | Additional Resources | Length |
---|---|---|
UniProtKB:Q1A5L0 | InterPro | 109 |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-198P19 | ZFIN Curated Data | |
Contained in | BAC | DKEY-27E20 | ZFIN Curated Data | |
Encodes | cDNA | MGC:162017 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001045322 (1) | 2482 nt | ||
Genomic | GenBank:CR847534 (1) | 211145 nt | ||
Polypeptide | UniProtKB:Q1A5L0 (1) | 109 aa |
- Guo, C., Deveau, C., Zhang, C., Nelson, R., Wei, X. (2020) Zebrafish Crb1, localizing uniquely to the cell membranes around cone photoreceptor axonemes, alleviates light damage to photoreceptors and modulates cones' light responsiveness. The Journal of neuroscience : the official journal of the Society for Neuroscience. 40(37):7065-7079
- Hazime, K., Malicki, J.J. (2017) Apico-basal Polarity Determinants Encoded by crumbs Genes Affect Ciliary Shaft Protein Composition, IFT Movement Dynamics, and Cilia Length.. Genetics. 207(3):1041-1051
- Abu-Siniyeh, A., Owen, D.M., Benzing, C., Rinkwitz, S., Becker, T.S., Majumdar, A., Gaus, K. (2016) The aPKC/Par3/Par6 polarity complex and membrane order are functionally inter-dependent in epithelia during vertebrate organogenesis. Traffic (Copenhagen, Denmark). 17(1):66-79
- Rodríguez-Fraticelli, A.E., Bagwell, J., Bosch-Fortea, M., Boncompain, G., Reglero-Real, N., García-León, M.J., Andrés, G., Toribio, M.L., Alonso, M.A., Millán, J., Perez, F., Bagnat, M., Martín-Belmonte, F. (2015) Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nature cell biology. 17(3):241-50
- Zou, J., Wang, X., and Wei, X. (2012) Crb Apical Polarity Proteins Maintain Zebrafish Retinal Cone Mosaics via Intercellular Binding of Their Extracellular Domains. Developmental Cell. 22(6):1261-1274
- Hsu, Y.C., and Jensen, A.M. (2010) Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size. BMC Cell Biology. 11:60
- Hsu, Y.C., Willoughby, J.J., Christensen, A.K., and Jensen, A.M. (2006) Mosaic Eyes is a novel component of the Crumbs complex and negatively regulates photoreceptor apical size. Development (Cambridge, England). 133(24):4849-4859
- Omori, Y., and Malicki, J. (2006) oko meduzy and Related crumbs Genes Are Determinants of Apical Cell Features in the Vertebrate Embryo. Current biology : CB. 16(10):945-957
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show