ZFIN ID: ZDB-PERS-960805-434
Pelegri, Francisco
Email: fjpelegri@facstaff.wisc.edu
URL:
Affiliation: Pelegri Lab
Address: Department of Genetics University of Wisconsin-Madison 410 Genetics Building 445 Henry Mall Madison, WI 53706-1574 USA
Country: United States
Phone: (608) 265-9286
Fax: (608) 262-2976
ORCID ID:


BIOGRAPHY AND RESEARCH INTERESTS
The earliest patterning events in vertebrate embryogenesis are still poorly understood. In lower vertebrates, these events are initiated by maternal factors present in the egg (such as involved in bicoid localization in Drosophila). In order to identify genes coding for such factors, we are carrying out a screen for maternal-effect mutations in the zebrafish. Mutations are induced in the germ line of parental (P) males by exposing them to the point-mutagen N-ethyl-N-nitroso-urea (ENU). P males are then mated to produce F1 progeny heterozygous for the induced mutations. Eggs are stripped from the F1 females and gynogenesis is artificially induced using early pressure, which inhibits the second meiotic division of the egg. This allows mutations to become homozygous in the gynogenetic F2 generation. Finally, F2 adult females are screened for maternal-effects by crossing them to wild type males and testing their progeny for embryonic phenotypes.

In a pilot screen we raised 204 gynogenetic clutches to adulthood. This led to the identification of one maternal effect mutation. Females homozygous for this mutation are 100% sterile and the embryonic phenotype is independent of the paternal genotype. The mutant embryos can be distinguished as early as the one-cell stage by an increased turbidity in the cytoplasm. We are currently carrying out a larger scale maternal-effect screen in which we planto produce over 1200 gynogenetic adult clutches and screen over 350 genomes. The efficiency of this screen is improved about threefold compared to our pilot screen due the use of lines selected for a more favorable sex ratio under gynogenetic conditions.

In our gynogenetic clutches we also find mutations affecting adult pigmentation and body shape (4 of each type were found in our pilot screen). Thus the use of gynogenesis is useful to identify not only maternal-effect genes, but also genes involved in juvenile and adult traits. Our current screen attempts to combine screens for visual function and adult behavior (H. Baier), skeletal defects (H. Grandel) and fin development and regeneration.

One maternal gene was identified by its zygotic phenotype, unpigmented larval xanthophores. Homozygous yobo females produce embryos which display a number of general defects irrespective of the paternal genotype (Odenthal et al., 1996a).


PUBLICATIONS
Nair, S., Welch, E.L., Moravec, C.E., Trevena, R.L., Hansen, C.L., Pelegri, F. (2023) The midbody component Prc1-like is required for microtubule reorganization during cytokinesis and dorsal determinant segregation in the early zebrafish embryo. Development (Cambridge, England). 150(4)
Hansen, C.L., Chamberlain, T.J., Trevena, R.L., Kurek, J.E., Pelegri, F. (2021) Conserved germ plasm characteristics across the Danio and Devario lineages. Genesis (New York, N.Y. : 2000). 59(10):e23452
Hansen, C.L., Pelegri, F. (2021) Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Frontiers in cell and developmental biology. 9:730332
Moravec, C.E., Voit, G.C., Otterlee, J., Pelegri, F. (2021) Identification of maternal-effect genes in zebrafish using maternal crispants. Development (Cambridge, England). 148(19)
Hansen, C.L., Pelegri, F. (2021) Methods for Visualization of RNA and Cytoskeletal Elements in the Early Zebrafish Embryo. Methods in molecular biology (Clifton, N.J.). 2218:219-244
Begeman, I.J., Shin, K., Osorio-Méndez, D., Kurth, A., Lee, N., Chamberlain, T.J., Pelegri, F.J., Kang, J. (2020) Decoding an Organ Regeneration Switch by Dissecting Cardiac Regeneration Enhancers. Development (Cambridge, England). 147(24):
Moravec, C.E., Pelegri, F. (2020) The role of the cytoskeleton in germ plasm aggregation and compaction in the zebrafish embryo. Current topics in developmental biology. 140:145-179
Eno, C., Hansen, C.L., Pelegri, F. (2019) Aggregation, segregation and dispersal of homotypic germ plasm RNPs in the early zebrafish embryo. Developmental Dynamics : an official publication of the American Association of Anatomists. 248(4):306-318
Moravec, C.E., Pelegri, F.J. (2019) An Accessible Protocol for the Generation of CRISPR-Cas9 Knockouts Using INDELs in Zebrafish. Methods in molecular biology (Clifton, N.J.). 1920:377-392
Eno, C., Pelegri, F. (2018) Modulation of F-actin dynamics by maternal mid1ip1L controls germ plasm aggregation and furrow recruitment in the zebrafish embryo. Development (Cambridge, England). 145(10)
Eno, C., Gomez, T., Slusarski, D.C., Pelegri, F. (2018) Slow calcium waves mediate furrow microtubule reorganization and germ plasm compaction in the early zebrafish embryo. Development (Cambridge, England). 145(10)
Welch, E.L., Eno, C.C., Nair, S., Lindeman, R.E., Pelegri, F. (2017) Functional Manipulation of Maternal Gene Products Using In Vitro Oocyte Maturation in Zebrafish. Journal of visualized experiments : JoVE. (122)
Baars, D.L., Takle, K.A., Heier, J., Pelegri, F. (2016) Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment. Journal of visualized experiments : JoVE. (118)
Zampedri, C., Tinoco-Cuellar, M., Carrillo-Rosas, S., Diaz-Tellez, A., Ramos-Balderas, J.L., Pelegri, F., Maldonado, E. (2016) Zebrafish P54 RNA helicases are cytoplasmic granule residents that are required for development and stress resilience. Biology Open. 5(10):1473-1484
Eno, C., Solanki, B., Pelegri, F. (2016) aura/mid1ip1L regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development (Cambridge, England). 143(9):1585-99
Pelegri, F., Mullins, M.C. (2016) Genetic screens for mutations affecting adult traits and parental-effect genes. Methods in cell biology. 135:39-87
Heier, J., Takle, K.A., Hasley, A.O., Pelegri, F. (2015) Ploidy manipulation and induction of alternate cleavage patterns through inhibition of centrosome duplication in the early zebrafish embryo. Developmental Dynamics : an official publication of the American Association of Anatomists. 244(10):1300-12
Ge, X., Grotjahn, D., Welch, E., Lyman-Gingerich, J., Holguin, C., Dimitrova, E., Abrams, E.W., Gupta, T., Marlow, F.L., Yabe, T., Adler, A., Mullins, M.C., Pelegri, F. (2014) Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction. PLoS Genetics. 10(6):e1004422
Welch, E., Pelegri, F. (2014) Cortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryo. Bioarchitecture. 5(1-2):13-26
Eno, C., Pelegri, F. (2013) Gradual recruitment and selective clearing generate germ plasm aggregates in the zebrafish embryo. Bioarchitecture. 3:125-32
Nair, S., Marlow, F., Abrams, E., Kapp, L., Mullins, M.C., and Pelegri, F. (2013) The chromosomal passenger protein birc5b organizes microfilaments and germ plasm in the zebrafish embryo. PLoS Genetics. 9(4):e1003448
Nair, S., Lindeman, R.E., and Pelegri, F. (2013) In vitro oocyte culture-based manipulation of zebrafish maternal genes. Developmental Dynamics : an official publication of the American Association of Anatomists. 242(1):44-52
Lindeman, R.E., and Pelegri, F. (2012) Localized Products of futile cycle/ lrmp Promote Centrosome-Nucleus Attachment in the Zebrafish Zygote. Current biology : CB. 22(10):843-851
Putiri, E., and Pelegri, F. (2011) The zebrafish maternal-effect gene mission impossible encodes the DEAH-box helicase Dhx16 and is essential for the expression of downstream endodermal genes. Developmental Biology. 353(2):275-289
Nair, S., and Pelegri, F.J. (2011) Practical approaches for implementing forward genetic strategies in zebrafish. Methods in molecular biology (Clifton, N.J.). 770:185-209
Pelegri, F., and Mullins, M.C. (2011) Genetic Screens for Mutations Affecting Adult Traits and Parental-effect Genes. Methods in cell biology. 104:83-120
Branam, A.M., Hoffman, G.G., Pelegri, F., and Greenspan, D.S. (2010) Zebrafish Chordin-like and Chordin Are Functionally Redundant in Regulating Patterning of the Dorsoventral Axis. Developmental Biology. 341(2):444-458
Hoffman, G.G., Branam, A.M., Huang, G., Pelegri, F., Cole, W.G., Wenstrup, R.M., and Greenspan, D.S. (2010) Characterization of the Six Zebrafish Clade B Fibrillar Procollagen Genes, with Evidence for Evolutionarily Conserved Alternative Splicing within the pro-alpha1(V) C-propeptide. Matrix biology : journal of the International Society for Matrix Biology. 29(4):261-275
Lindeman, R.E., and Pelegri, F. (2010) Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Molecular reproduction and development. 77(4):299-313
Kim, Y.C., Clark, R.J., Pelegri, F., and Alexander, C.M. (2009) Wnt4 is not sufficient to induce lobuloalveolar mammary development. BMC Developmental Biology. 9:55
Yabe, T., Ge, X., Lindeman, R., Nair, S., Runke, G., Mullins, M.C., and Pelegri, F. (2009) The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genetics. 5(6):e1000518
Ge, X., Link, B.A., and Pelegri, F. (2009) Cell cycle control in the zebrafish. In Cell cycle control in vertebrates (J. Kubiak, M.A. Ciemerych and L. Richard-Parpaillon, Eds.). :9-54
Yabe, T., Ge, X., and Pelegri, F. (2007) The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Developmental Biology. 312(1):44-60
Lyman-Gingerich, J., and Pelegri, F. (2007) Maternal factors in fish oogenesis and embryonic development. The Fish Oocyte. :141-174
Slusarski, D.C., and Pelegri, F. (2007) Calcium signaling in vertebrate embryonic patterning and morphogenesis. Developmental Biology. 307(1):1-13
Jasuja, R., Ge, G., Voss, N.G., Lyman-Gingerich, J., Branam, A.M., Pelegri, F.J., and Greenspan, D.S. (2007) Bone morphogenetic protein 1 prodomain specifically binds and regulates signaling by bone morphogenetic proteins 2 and 4. The Journal of biological chemistry. 282(12):9053-9062
Urven, L.E., Yabe, T., and Pelegri, F. (2006) A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo. Journal of Cell Science. 119(20):4342-4352
Lyman Gingerich, J., Lindeman, R., Putiri, E., Stolzmann, K., and Pelegri, F. (2006) Analysis of axis induction mutant embryos reveals morphogenetic events associated with zebrafish yolk extension formation. Developmental Dynamics : an official publication of the American Association of Anatomists. 235(10):2749-2760
Jasuja, R., Voss, N., Ge, G., Hoffman, G.G., Lyman-Gingerich, J., Pelegri, F., and Greenspan, D.S. (2006) bmp1 and mini fin are functionally redundant in regulating formation of the zebrafish dorsoventral axis. Mechanisms of Development. 123(7):548-558
Theusch, E.V., Brown, K.J., and Pelegri, F. (2006) Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Developmental Biology. 292(1):129-141
Lyman Gingerich, J., Westfall, T.A., Slusarski, D.C., and Pelegri, F. (2005) hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Developmental Biology. 286(2):427-439
Pelegri, F. (2004) The Role of Maternal Factors in Early Zebrafish Development. In Fish Development and Genetics - the Zebrafish and Medaka Models. Gong, Z. and Korh, V., Eds. Book series of "Molecular Aspects of Fish and Marine Biology". 2:1-38
Pelegri, F., Dekens, M.P., Schulte-Merker, S., Maischein, H.M., Weiler, C., and Nüsslein-Volhard, C. (2004) Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Developmental Dynamics : an official publication of the American Association of Anatomists. 231(2):324-335
Pelegri, F., and Mullins, M.C. (2004) Genetic screens for maternal-effect mutations. The Zebrafish: Genetics, Genomics and Informatics, 2nd ed., Methods Cell Biol.. 77:21-51
Pelegri, F. (2003) Maternal factors in zebrafish development. Developmental Dynamics : an official publication of the American Association of Anatomists. 228(3):535-554
Dekens, M.P., Pelegri, F.J., Maischein, H.M., and Nüsslein-Volhard, C. (2003) The maternal-effect gene futile cycle is essential for pronuclear congression and mitotic spindle assembly in the zebrafish zygote. Development (Cambridge, England). 130(17):3907-3916
Pelegri, F. (2002) Mutagenesis. In Zebrafish: A Practical Approach, S. Schulte-Merker and C. Nüsslein-Volhard, eds. IRL Press. 261:145-174
Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., and Nüsslein-Volhard, C. (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. The Journal of cell biology. 149(4):875-888
Pelegri, F., Knaut, H., Maischein, H.M., Schulte-Merker, S., and Nüsslein-Volhard, C. (1999) A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Current biology : CB. 9(24):1431-1440
Geisler, R., Rauch, G.J., Baier, H., van Bebber, F., Brobeta, L., Dekens, M.P., Finger, K., Fricke, C., Gates, M.A., Geiger, H., Geiger-Rudolph, S., Gilmour, D., Glaser, S., Gnugge, L., Habeck, H., Hingst, K., Holley, S., Keenan, J., Kirn, A., Knaut, H., Lashkari, D., Maderspacher, F., Martyn, U., Neuhauss, S., Neumann, C., Nicolson, T., Pelegri, F., Ray, R., Rick, J.M., Roehl, H., Roeser, T., Schauerte, H.E., Schier, A.F., Schönberger, U., Schönthaler, H.-B., Schulte-Merker, S., Seydler, C., Talbot, W.S., Weiler, C., Nüsslein-Volhard, C., and Haffter, P. (1999) A radiation hybrid map of the zebrafish genome. Nature Genetics. 23(1):86-89
Pelegri, F. and Schulte-Merker, S. (1999) A gynogenesis-based screen for maternal-effect genes in the zebrafish, Danio rerio. In The Zebrafish: Genetics and Genomics, H.W. Detrich, III, M. Westerfield, and L.I. Zon, eds., San Diego, CA: Academic Press, Methods Cell Biol.. 60:1-20
Pelegri, F. and Maischein, H.M. (1998) Function of zebrafish ß-catenin and TCF-3 in dorsoventral patterning. Mechanisms of Development. 77:63-74
Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., Brand, M., van Eeden, F.J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., and Nüsslein-Volhard, C. (1996) Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development (Cambridge, England). 123:143-151
Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., van Eeden, F.J., Granato, M., Brand, M., Furutani-Seiki, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., and Nüsslein-Volhard, C. (1996) dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development (Cambridge, England). 123:95-102
Brand, M., Heisenberg, C.P., Warga, R.M., Pelegri, F., Karlstrom, R.O., Beuchle, D., Picker, A., Jiang, Y.J., Furutani-Seiki, M., van Eeden, F.J., Granato, M., Haffter, P., Hammerschmidt, M., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., and Nüsslein-Volhard, C. (1996) Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development (Cambridge, England). 123:129-142

NON-ZEBRAFISH PUBLICATIONS