ZFIN ID: ZDB-PUB-970210-8
dino and mercedes, two genes regulating dorsal development in the zebrafish embryo
Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., van Eeden, F.J., Granato, M., Brand, M., Furutani-Seiki, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., and Nüsslein-Volhard, C.
Date: 1996
Source: Development (Cambridge, England) 123: 95-102 (Journal)
Registered Authors: Brand, Michael, Furutani-Seiki, Makoto, Granato, Michael, Haffter, Pascal, Hammerschmidt, Matthias, Heisenberg, Carl-Philipp, Jiang, Yun-Jin, Kane, Donald A., Kelsh, Robert, Mullins, Mary C., Nüsslein-Volhard, Christiane, Odenthal, Joerg, Pelegri, Francisco, Warga, Rachel M., van Eeden, Freek
Keywords: zebrafish; dorsalization; mesoderm patterning; neural induction; dino; mercedes
MeSH Terms: Animals; Embryonic Development; Gastrula/physiology; Gene Expression Regulation, Developmental*; Genes* (all 10) expand
PubMed: 9007232
FIGURES   (current status)
ABSTRACT
We describe two genes, dino and mercedes, which are required for the organization of the zebrafish body plan. In dino mutant embryos, the tail is enlarged at the expense of the head and the anterior region of the trunk. The altered expression patterns of various marker genes reveal that, with the exception of the dorsal most marginal zone, all regions of the early dino mutant embryo acquire more ventral fates. These alterations are already apparent before the onset of gastrulation. mercedes mutant embryos show a similar but weaker phenotype, suggesting a role in the same patterning processes. The phenotypes suggests that dino and mercedes are required for the establishment of dorsal fates in both the marginal and the animal zone of the early gastrula embryo. Their function in the patterning of the ventrolateral mesoderm and the induction of the neuroectoderm is similar to the function of the Spemann organizer in the amphibian embryo.
ADDITIONAL INFORMATION