FIGURE

Fig 2

ID
ZDB-FIG-200412-2
Publication
Wiles et al., 2020 - Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation
Other Figures
All Figure Page
Back to All Figure Page
Fig 2

Motility and chemotaxis mutants have altered intestinal spatial organization.

(A) Cartoon of a 6-day-old zebrafish. Dashed box marks intestinal region imaged by LSFM. (B) Anatomical regions of the larval zebrafish intestine. (C) Maximum intensity projections acquired by LSFM showing the spatial organization of wt Vibrio (top), Δmot (middle), and Δche (bottom) within the intestine. Top right inset shows a zoomed-in view of wt Vibrio cells in a separate fish that was colonized with a 1:100 mixture of green- and red-tagged variants so that the cellular organization of the dense Vibrio population could be discerned. The dilute channel (green) is shown. Dashed lines mark approximate intestinal boundaries. Open arrowheads: single bacterial cells; solid arrowheads: small aggregates; tailed arrowheads: large aggregates. Arrowheads with a black stroke mark swimming cells, which appear as comet-like streaks. (D) Cartoon showing the intestinal region pictured in panel E. (E) Maximum intensity projections acquired by LSFM showing transverse view of the foregut region colonized with wt, Δmot, or Δche. (F) Fraction of planktonic cells contained within each strain’s population. Each circle is a measurement from a single intestinal population. Bars denote medians and interquartile ranges. Letters denote significant differences. p < 0.05, Kruskal-Wallis and Dunn’s multiple comparisons test. (G) Image-derived abundances of wt (n = 7), Δmot (n = 4), and Δche (n = 5) with respect to position along the length of the gut. Shaded regions mark confidence intervals. Underlying data plotted in panels F and G are provided in S1 Data. LSFM, light sheet fluorescence microscopy; wt, wild type.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Biol.