FIGURE

Fig. 3

ID
ZDB-FIG-110321-21
Publication
Wu et al., 2011 - SNW1 Is a Critical Regulator of Spatial BMP Activity, Neural Plate Border Formation, and Neural Crest Specification in Vertebrate Embryos
Other Figures
All Figure Page
Back to All Figure Page
Fig. 3

Dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm.

(A) Left panels. Wild-type (WT) zebrafish embryos at the indicated times post-fertilization were doubly stained for the neural crest marker Sox10 (dark blue) and SNW1 (grey-purple), which is localized in the neural plate (see Figure 1F). Right panels. Wild-type stage 14 Xenopus embryos were stained for either SNW1, the neural crest marker Slug or the neural plate marker Sox3. The orange lines mark the edges of the neural crest staining to enable direct comparison of expression domains. (B) One dorsal or one ventral blastomere of four-cell Xenopus embryos was injected with Fdx with or without 10 ng of MoSNW1a, as indicated. At stage 14 the embryos were stained for Slug and fluorescein. (C) Xenopus embryos were either uninjected (control), injected with 20 ng of MoSNW1a at the one-cell stage, injected with 250 pg of CerS mRNA into all four blastomeres at the four-cell stage, or injected with MoSNW1a at the one-cell stage followed by CerS mRNA at the four-cell stage. WISH was carried out for the mesoderm markers Xbra and Gsc at stage 12, or the neural plate marker Sox3 and the neural crest marker Slug at stage 14. OE, overexpression. In all cases the number of embryos out of the total analyzed that showed the presented staining pattern is given.

Expression Data
Genes:
Fish:
Anatomical Terms:
Stage Range: 1-4 somites to 5-9 somites

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Biol.