Gene
glrba
- ID
- ZDB-GENE-010410-2
- Name
- glycine receptor, beta a
- Symbol
- glrba Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 1 Mapping Details/Browsers
- Description
- Predicted to enable excitatory extracellular ligand-gated monoatomic ion channel activity. Predicted to contribute to chloride channel activity. Predicted to be involved in chloride transmembrane transport and glycinergic synaptic transmission. Predicted to act upstream of or within monoatomic ion transmembrane transport. Predicted to be located in cytoplasm; dendrite; and postsynaptic membrane. Is expressed in hindbrain and spinal cord. Human ortholog(s) of this gene implicated in hyperekplexia 2. Orthologous to human GLRB (glycine receptor beta).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-glrba | Sun et al., 2019 | |
CRISPR2-glrba | Sun et al., 2019 | |
CRISPR3-glrba | Sun et al., 2019 | |
CRISPR4-glrba | Sun et al., 2019 | |
MO1-glrba | N/A | Hirata et al., 2013 |
1 - 5 of 5
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
hyperekplexia 2 | Alliance | Hyperekplexia 2 | 614619 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR018000 | Neurotransmitter-gated ion-channel, conserved site |
Domain | IPR006029 | Neurotransmitter-gated ion-channel transmembrane domain |
Domain | IPR006202 | Neurotransmitter-gated ion-channel ligand-binding domain |
Domain | IPR047029 | Glycine receptor subunit beta, transmembrane domain |
Family | IPR006201 | Neurotransmitter-gated ion-channel |
1 - 5 of 9 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | Glycine receptor beta | Glycine receptor subunit beta, transmembrane domain | Neuronal acetylcholine receptor | Neurotransmitter-gated ion-channel | Neurotransmitter-gated ion-channel, conserved site | Neurotransmitter-gated ion-channel ligand-binding domain | Neurotransmitter-gated ion-channel ligand-binding domain superfamily | Neurotransmitter-gated ion-channel transmembrane domain | Neurotransmitter-gated ion-channel transmembrane domain superfamily |
---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M6YXY6 | InterPro | 493 | |||||||||
UniProtKB:Q9DES8 | InterPro | 498 | |||||||||
UniProtKB:A0AB32TQ72 | InterPro | 494 | |||||||||
UniProtKB:A0AB32TQY6 | InterPro | 493 | |||||||||
UniProtKB:A0AB32TUJ6 | InterPro | 499 |
1 - 5 of 5
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-280L8 | ZFIN Curated Data | |
Contained in | BAC | DKEY-251E24 | ZFIN Curated Data | |
Encodes | EST | fj42f03 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131781 (1) | 2426 nt | ||
Genomic | GenBank:BX005212 (1) | 272535 nt | ||
Polypeptide | UniProtKB:A0AB32TUJ6 (1) | 499 aa |
- Rauschenberger, V., Wardenburg, N.V., Schaefer, N., Ogino, K., Hirata, H., Lillesaar, C., Kluck, C.J., Meinck, H.M., Borrmann, M., Weishaupt, A., Doppler, K., Wickel, J., Geis, C., Sommer, C., Villmann, C. (2020) GlyR autoantibodies impair receptor function and induce motor dysfunction. Annals of neurology. 88(3):544-561
- Liu, H., Liu, Z.Z. (2019) Aggressive-like behavior and increased glycine transporters in a zebrafish model of CHARGE syndrome. Behavioural brain research. 378:112293
- Samarut, E., Chalopin, D., Riché, R., Allard, M., Liao, M., Drapeau, P. (2019) Individual knock out of glycine receptor alpha subunits identifies a specific requirement of glra1 for motor function in zebrafish. PLoS One. 14:e0216159
- Sun, Y., Zhang, B., Luo, L., Shi, D.L., Wang, H., Cui, Z., Huang, H., Cao, Y., Shu, X., Zhang, W., Zhou, J., Li, Y., Du, J., Zhao, Q., Chen, J., Zhong, H., Zhong, T.P., Li, L., Xiong, J.W., Peng, J., Xiao, W., Zhang, J., Yao, J., Yin, Z., Mo, X., Peng, G., Zhu, J., Chen, Y., Zhou, Y., Liu, D., Pan, W., Zhang, Y., Ruan, H., Liu, F., Zhu, Z., Meng, A., ZAKOC Consortium (2019) Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome research. 30(1):118-26
- Tsata, V., Kroehne, V., Reinhardt, S., El-Armouche, A., Brand, M., Wagner, M., Reimer, M.M. (2019) Electrophysiological Properties of Adult Zebrafish Oligodendrocyte Progenitor Cells. Frontiers in Cellular Neuroscience. 13:102
- Low, S.E., Ito, D., Hirata, H. (2018) Characterization of the Zebrafish Glycine Receptor Family Reveals Insights Into Glycine Receptor Structure Function and Stoichiometry. Frontiers in molecular neuroscience. 11:286
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Deng, C., Chen, H., Yang, N., Feng, Y., Hsueh, A.J. (2015) Apela regulates fluid homeostasis by binding to the APJ receptor to activate Gi signaling. The Journal of biological chemistry. 290(30):18261-8
- Ganser, L.R., Yan, Q., James, V.M., Kozol, R., Topf, M., Harvey, R.J., and Dallman, J.E. (2013) Distinct phenotypes in zebrafish models of human startle disease. Neurobiology of disease. 60:139-51
1 - 10 of 14
Show