FIGURE

Fig. 9

ID
ZDB-FIG-210215-18
Publication
Werner et al., 2021 - Hallmarks of primary neurulation are conserved in the zebrafish forebrain
Other Figures
All Figure Page
Back to All Figure Page
Fig. 9

Dynamics of anterior neurulation.

a Still frames of an embryo expressing mKaede, showing how the measurements in graphs bl were acquired, at a discrete time point. Neural groove was measured as the angle formed by the dorsal-most tissue; the optic vesicle angle was measured as the angle formed by the outline of the optic vesicle as it evaginates; the neural fold basal angle was measured as the angle formed by the basal surface of NF cells; the neural fold elevation was measured as the difference between the (elevated) position of the basal surface of NFs relative to its initial position at time zero (T0); the distance between the neural folds is the measure of the distance between the basal surface of NF cells. bg Graphs illustrating the dynamics of neural groove formation (left Y axis, blue line in b and e), optic vesicle angle (left Y axis, blue line in c and f) and neural fold basal angle (left Y axis, blue line in d and g) as compared with neural fold elevation (right Y axis, black line in bd) and distance between the neural folds (right Y axis, black line in eg) over time (X axis). hl Measurements indicated in a were converted into rates: (measurement frame 2−measurement frame 1)/time_step. Solid lines represent a fitted linear model for rate measurements of four embryos with the standard error as the shaded area. Scale bar in a = 50 μm.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Commun Biol