FIGURE

Fig. 7

ID
ZDB-FIG-050307-7
Publication
Amoyel et al., 2005 - Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain
Other Figures
All Figure Page
Back to All Figure Page
Fig. 7

Model of regulation of cell differentiation and restriction of boundary spreading. The diagrams illustrate the similar regulatory hierarchy of gene regulation and intercellular signalling in (A) the anterior compartment of the Drosophila wing disc and (B) the zebrafish hindbrain. In both systems, localised expression of wg/wnt1 is induced by fringe-mediated modulation of Notch activity at boundaries. In the hindbrain, there is in addition fringe-independent expression of Wnt1 in the roof plate. Wg/Wnt1 acts on non-boundary cells to upregulate proneural gene expression (as-c/ash) and thus induce or enable a neural fate. In the wing disc, proneural expression only occurs in neighbouring cells, whereas in the zebrafish hindbrain Wnt1 acts at longer range to promote neurogenesis throughout the segments. Proneural genes upregulate Delta expression, which in turn activates Notch in boundary cells. In addition, proneural gene products and/or Delta cell autonomously suppress boundary cell formation, thus preventing spreading of boundaries. Because in the zebrafish, Notch activation is not sufficient to induce boundary cell marker expression (Cheng et al., 2004), another factor (X) is proposed to be required for boundary cell specification.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Development