PUBLICATION
Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model
- Authors
- Jim, K.K., Engelen-Lee, J., van der Sar, A.M., Bitter, W., Brouwer, M.C., van der Ende, A., Veening, J.W., van de Beek, D., Vandenbroucke-Grauls, C.M.
- ID
- ZDB-PUB-160821-3
- Date
- 2016
- Source
- Journal of neuroinflammation 13: 188 (Journal)
- Registered Authors
- Bitter, Wilbert, van der Sar, Astrid M.
- Keywords
- Host-microbe interaction, Live cell imaging, Pneumococcal meningitis, Pneumolysin, Streptococcus pneumoniae, Zebrafish
- MeSH Terms
-
- Age Factors
- Animals
- Animals, Genetically Modified
- Blood-Brain Barrier/microbiology
- Blood-Brain Barrier/pathology
- Disease Models, Animal
- Embryo, Nonmammalian/microbiology
- Gene Expression Regulation, Developmental/genetics*
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunity, Innate/physiology*
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Meningitis, Pneumococcal/genetics
- Meningitis, Pneumococcal/microbiology*
- Meningitis, Pneumococcal/mortality
- Meningitis, Pneumococcal/pathology*
- Streptococcus pneumoniae/pathogenicity*
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- PubMed
- 27542968 Full text @ J Neuroinflammation
Citation
Jim, K.K., Engelen-Lee, J., van der Sar, A.M., Bitter, W., Brouwer, M.C., van der Ende, A., Veening, J.W., van de Beek, D., Vandenbroucke-Grauls, C.M. (2016) Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. Journal of neuroinflammation. 13:188.
Abstract
Background Streptococcus pneumoniae is one of the most important causes of bacterial meningitis, an infection where unfavourable outcome is driven by bacterial and host-derived toxins. In this study, we developed and characterized a pneumococcal meningitis model in zebrafish embryos that allows for real-time investigation of early host-microbe interaction.
Methods Zebrafish embryos were infected in the caudal vein or hindbrain ventricle with green fluorescent wild-type S. pneumoniae D39 or a pneumolysin-deficient mutant. The kdrl:mCherry transgenic zebrafish line was used to visualize the blood vessels, whereas phagocytic cells were visualized by staining with far red anti-L-plastin or in mpx:GFP/mpeg1:mCherry zebrafish, that have green fluorescent neutrophils and red fluorescent macrophages. Imaging was performed by fluorescence confocal and time-lapse microscopy.
Results After infection by caudal vein, we saw focal clogging of the pneumococci in the blood vessels and migration of bacteria through the blood-brain barrier into the subarachnoid space and brain tissue. Infection with pneumolysin-deficient S. pneumoniae in the hindbrain ventricle showed attenuated growth and migration through the brain as compared to the wild-type strain. Time-lapse and confocal imaging revealed that the initial innate immune response to S. pneumoniae in the subarachnoid space mainly consisted of neutrophils and that pneumolysin-mediated cytolytic activity caused a marked reduction of phagocytes.
Conclusions This new meningitis model permits detailed analysis and visualization of host-microbe interaction in pneumococcal meningitis in real time and is a very promising tool to further our insights in the pathogenesis of pneumococcal meningitis.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping