Fig. 5
- ID
- ZDB-FIG-181018-15
- Publication
- Du et al., 2018 - A transgenic zebrafish model for in vivo long-term imaging of retinotectal synaptogenesis
- Other Figures
- All Figure Page
- Back to All Figure Page
Role of miR-132 in developmental synaptogenesis. (a) Lateral (left bottom) and dorsal (right) view of whole-mount in situ hybridization of miR-132 in zebrafish larvae at 3 dpf. The black arrows in left and right panels indicate the signal in the optic tectum and the RGC layer, respectively. Left top, whole-mount in situ hybridization of a scramble probe as a control. (b) Knockdown efficiency of miR-132 MO. Quantification of mature miR-132 in 3-dpf zebrafish larvae without MO injection or injected with either control or miR-132 MO by relative quantitative real-time PCR. Data were summarized from six independent experiments. n.s., no significant, ***P < 0.001 (One-way ANOVA and Tukey’s multiple comparison test). (c) Example of time series (from 96 hpf to 114 hpf) images showing the growth of Sypb-EGFP puncta on the same RGC axonal arbors in PGUSG larvae without MO injection or injected with either control or miR-132 MO. The dashed line indicates the position of the first branch point in each axonal arbor. R, rostral; L, lateral. Scale bar, 5 μm. (d) Summary of the net growth rate of Sypb-EGFP puncta from 96 hpf to 114 hpf. The numbers on the bars indicate the number of RGCs examined. n.s., no significant, **P < 0.01 (Two-tailed Unpaired Student’s t-test). |