Gene
pcxa
- ID
- ZDB-GENE-090908-3
- Name
- pyruvate carboxylase a
- Symbol
- pcxa Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 21 Mapping Details/Browsers
- Description
- Predicted to enable pyruvate carboxylase activity. Acts upstream of or within habituation. Predicted to be active in mitochondrion. Human ortholog(s) of this gene implicated in pyruvate carboxylase deficiency disease. Orthologous to human PC (pyruvate carboxylase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 1 Figure from Wolman et al., 2015
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la014043Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la021930Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la021931Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la028335Tg | Transgenic insertion | Unknown | Unknown | DNA | |
p171 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa16065 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa23952 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa37328 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 8 of 8
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-pcxa | (2) | |
CRISPR2-pcxa | (2) | |
CRISPR3-pcxa | (2) | |
CRISPR4-pcxa | (2) | |
CRISPR5-pcxa | (2) | |
CRISPR6-pcxa | (2) | |
CRISPR7-pcxa | (2) | |
CRISPR8-pcxa | (2) | |
CRISPR9-pcxa | LaCoursiere et al., 2024 | |
CRISPR10-pcxa | LaCoursiere et al., 2024 |
1 - 10 of 10
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
pyruvate carboxylase deficiency disease | Alliance | Pyruvate carboxylase deficiency | 266150 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Binding_site | IPR001882 | Biotin-binding site |
Domain | IPR000089 | Biotin/lipoyl attachment |
Domain | IPR000891 | Pyruvate carboxyltransferase |
Domain | IPR003379 | Carboxylase, conserved domain |
Domain | IPR005479 | Carbamoyl-phosphate synthetase large subunit-like, ATP-binding domain |
1 - 5 of 15 Show all
Domain Details Per Protein
Protein | Length | Aldolase-type TIM barrel | ATP-grasp fold | ATP-grasp fold, subdomain 1 | Biotin-binding site | Biotin carboxylase, C-terminal | Biotin carboxylase-like, N-terminal domain | Biotin carboxylation domain | Biotin/lipoyl attachment | Carbamoyl-phosphate synthetase large subunit-like, ATP-binding domain | Carboxylase, conserved domain | Pre-ATP-grasp domain superfamily | Pyruvate carboxylase | Pyruvate carboxyltransferase | Rudiment single hybrid motif | Single hybrid motif |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A0R4IFJ4
|
1181 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-384D19 | ZFIN Curated Data | |
Contained in | BAC | CH211-198K5 | ZFIN Curated Data | |
Contained in | BAC | CH211-201D22 | ZFIN Curated Data | |
Contained in | BAC | CH211-217F24 | ZFIN Curated Data | |
Contained in | BAC | CH211-250A23 | ||
Encodes | cDNA | MGC:123047 | ZFIN Curated Data | |
Has Artifact | cDNA | MGC:173742 |
1 - 7 of 7
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001328356 (1) | 4071 nt | ||
Genomic | GenBank:BX465841 (1) | 190913 nt | ||
Polypeptide | UniProtKB:A0A0R4IFJ4 (1) | 1181 aa |
- LaCoursiere, C.M., Ullmann, J.F.P., Koh, H.Y., Turner, L., Baker, C.M., Robens, B., Shao, W., Rotenberg, A., McGraw, C.M., Poduri, A.H. (2024) Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability. iScience. 27:110172110172
- Wang, J.X., Zhang, Y.Y., Qian, Y.C., Qian, Y.F., Jin, A.H., Wang, M., Luo, Y., Qiao, F., Zhang, M.L., Chen, L.Q., Du, Z.Y. (2024) Inhibition of mitochondrial citrate shuttle alleviates metabolic syndromes induced by high-fat diet. American journal of physiology. Cell physiology. 327(3):C737-C749
- Liu, Y., Zhu, Z., Ho, I.H.T., Shi, Y., Li, J., Wang, X., Chan, M.T.V., Cheng, C.H.K. (2020) Genetic Deletion of miR-430 Disrupts Maternal-Zygotic Transition and Embryonic Body Plan. Frontiers in genetics. 11:853
- Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., Giraldez, A.J. (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods. 12:982-8
- Wolman, M.A., Jain, R.A., Marsden, K.C., Bell, H., Skinner, J., Hayer, K.E., Hogenesch, J.B., Granato, M. (2015) A Genome-wide Screen Identifies PAPP-AA-Mediated IGFR Signaling as a Novel Regulator of Habituation Learning. Neuron. 85(6):1200-11
- Nolte, H., Konzer, A., Ruhs, A., Jungblut, B., Braun, T., Krüger, M. (2014) Global protein expression profiling of zebrafish organs based on in vivo incorporation of stable isotopes. Journal of Proteome Research. 13:2162-74
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Sato, Y., Hashiguchi, Y., and Nishida, M. (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolutionary Biology. 9:127
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 10 of 10
Show