Gene
trim63b
- ID
- ZDB-GENE-040426-1003
- Name
- tripartite motif containing 63b
- Symbol
- trim63b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 9 Mapping Details/Browsers
- Description
- Predicted to enable ubiquitin protein ligase activity. Predicted to be involved in innate immune response. Predicted to be located in Z disc. Predicted to be active in cytoplasm. Is expressed in brain; cardiovascular system; gonad; and musculature system. Orthologous to human TRIM63 (tripartite motif containing 63).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 11 figures from 7 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:56376 (9 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | B-box, C-terminal | B-box-type zinc finger | COS domain | Tripartite motif-containing | Tripartite motif-containing protein 54, B-box-type 2 zinc finger | Zinc finger, RING/FYVE/PHD-type | Zinc finger, RING-type | Zinc finger, RING-type, conserved site | Zinc finger, RING-type, eukaryotic |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q7ZWH0
|
348 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
trim63b-201
(1)
|
Ensembl | 1,513 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEYP-74A11 | ZFIN Curated Data | |
Encodes | cDNA | MGC:56376 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_201095 (1) | 1532 nt | ||
Genomic | GenBank:CR545476 (1) | 202562 nt | ||
Polypeptide | UniProtKB:Q7ZWH0 (1) | 348 aa |
- Chen, Z.L., Guo, C., Zou, Y.Y., Feng, C., Yang, D.X., Sun, C.C., Wen, W., Jian, Z.J., Zhao, Z., Xiao, Q., Lan-Zheng, ., Peng, X.Y., Zhou, Z.Q., Tang, C.F. (2023) Aerobic exercise enhances mitochondrial homeostasis to counteract D-galactose-induced sarcopenia in zebrafish. Experimental gerontology. 180:112265
- Wen, W., Guo, C., Chen, Z., Yang, D., Zhu, D., Jing, Q., Zheng, L., Sun, C., Tang, C. (2023) Regular exercise attenuates alcoholic myopathy in zebrafish by modulating mitochondrial homeostasis. PLoS One. 18:e0294700e0294700
- Sun, C.C., Yang, D., Chen, Z.L., Xiao, J.L., Xiao, Q., Li, C.L., Zhou, Z.Q., Peng, X.Y., Tang, C.F. (2022) Exercise intervention mitigates zebrafish age-related sarcopenia via alleviating mitochondrial dysfunction. The FEBS journal. 290(6):1519-1530
- Wen, W., Sun, C., Chen, Z., Yang, D., Zhou, Z., Peng, X., Tang, C. (2022) Alcohol Induces Zebrafish Skeletal Muscle Atrophy through HMGB1/TLR4/NF-κB Signaling. Life (Basel, Switzerland). 12(8)
- Sun, C.C., Zhou, Z.Q., Chen, Z.L., Zhu, R.K., Yang, D., Peng, X.Y., Zheng, L., Tang, C.F. (2021) Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish. Biology. 10(8):
- Faught, E., Vijayan, M.M. (2019) Loss of the glucocorticoid receptor in zebrafish improves muscle glucose availability and increases growth. American journal of physiology. Endocrinology and metabolism. 316(6):E1093-E1104
- Faught, E., Vijayan, M.M. (2019) Glucocorticoid and mineralocorticoid receptor activation modulates postnatal growth. The Journal of endocrinology. 244(2):261-271
- Li, B., Li, S., He, Q., Du, S. (2019) Generation of MuRF-GFP transgenic zebrafish models for investigating murf gene expression and protein localization in Smyd1b and Hsp90α1 knockdown embryos. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 240:110368
- Shimizu, H., Langenbacher, A.D., Huang, J., Wang, K., Otto, G., Geisler, R., Wang, Y., Chen, J.N. (2017) The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. eLIFE. 6
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
1 - 10 of 15
Show