PUBLICATION

Time-Dependent Monitoring of Dopamine in the Brain of Live Embryonic Zebrafish Using Electrochemically Pretreated Carbon Fiber Microelectrodes

Authors
Dumitrescu, E., Deshpande, A., Wallace, K.N., Andreescu, S.
ID
ZDB-PUB-230215-34
Date
2022
Source
ACS measurement science au   2: 261270261-270 (Journal)
Registered Authors
Wallace, Kenneth
Keywords
none
MeSH Terms
none
PubMed
36785866 Full text @ ACS Meas Sci Au
Abstract
Neurotransmitters are involved in functions related to signaling, stress response, and pathological disorder development, and thus, their real-time monitoring at the site of production is important for observing the changes related to these disorders. Here, we demonstrate the first time-dependent quantification of dopamine in the brains of live zebrafish embryos using electrochemically pretreated carbon fiber microelectrodes (CFMEs) utilizing differential pulse voltammetry as the measurement technique. The pretreatment of the CFMEs in 0.1 M NaOH held at a potential of +1.0 V for 600 s improves the sensitivity toward dopamine and allows for reliable measurements in low ionic strength media. We demonstrate the measurement of extracellular dopamine concentrations in the zebrafish brain during late embryogenesis. The extracellular dopamine concentration in the tectum of zebrafish varies between 200 and 400 nM. The conventional pharmacological manipulation of neurotransmitter levels in the brain demonstrates the selective detection of dopamine at the implantation site. Exposure to the dopamine transporter inhibitor nomifensine induces an increase in extracellular dopamine from 201.9 (±34.9) nM to 352.2 (±20.0) nM, while exposure to the norepinephrine transporter inhibitor desipramine does not lead to a significant modulation of the measured signal. Furthermore, we report the quantitative assessment of the catecholamine stress response of embryos to tricaine, an anesthetic frequently used in zebrafish assays. Exposure to tricaine induces a short-lived increase in brain dopamine from 198.6 (±15.7) nM to a maximum of 278.8 (±14.0) nM. Thus, in vivo electrochemistry can detect real-time changes in zebrafish neurochemical physiology resulting from drug exposure.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping