PUBLICATION

Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina

Authors
Wang, X., Roberts, P.A., Yoshimatsu, T., Lagnado, L., Baden, T.
ID
ZDB-PUB-230210-26
Date
2023
Source
Cell Reports   42: 112055112055 (Journal)
Registered Authors
Baden, Tom, Lagnado, Leon, Roberts, Paul A., Wang, Xinwei, Yoshimatsu, Takeshi
Keywords
CP: Neuroscience, amacrine cell, bipolar cell, color vision, inhibition, retina, zebrafish
MeSH Terms
  • Amacrine Cells*/physiology
  • Animals
  • Retina/physiology
  • Retinal Cone Photoreceptor Cells/physiology
  • Zebrafish*
PubMed
36757846 Full text @ Cell Rep.
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split "color" from "grayscale" information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this "dynamic balance," ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping