Community Action Needed: Please respond to the NIH RFI
ZFIN ID: ZDB-PUB-180404-6
Radiation-Sensitive Dendrimer-Based Drug Delivery System
Wu, S.Y., Chou, H.Y., Yuh, C.H., Mekuria, S.L., Kao, Y.C., Tsai, H.C.
Date: 2017
Source: Advanced science (Weinheim, Baden-Wurttemberg, Germany)   5: 1700339 (Journal)
Registered Authors: Yuh, Chiou-Hwa (Cathy)
Keywords: HeLa cells, combination therapies, dendrimers, doxorubicin, zebrafish
MeSH Terms: none
PubMed: 29610720 Full text @ Adv Sci (Weinh)
Combination of chemotherapy and radiotherapy is used to enhance local drug delivery while reducing off-target tissue effects. Anticancer drug doxorubicin (DOX) is loaded into l-cysteine modified G4.5 dendrimer (GC/DOX) and released at different pH values in the presence and absence of γ-radiation. Presence of γ-radiation significantly improves DOX release from the GC/DOX under acidic pH conditions, suggesting that GC dendrimer is a radiation-sensitive drug delivery system. GC/DOX is further evaluated by determining cytotoxicity in uterine cervical carcinoma HeLa cells. GC/DOX shows high affinity for cancer cells and effective drug release following an external stimulus (radiation exposure), whereas an in vivo zebrafish study confirms that l-cysteine acts as a radiosensitizer. GC/DOX treatment combined with radiotherapy synergistically and successfully inhibits cancer cell growth.