PUBLICATION
Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye
- Authors
- Kanow, M.A., Giarmarco, M.M., Jankowski, C.S., Tsantilas, K., Engel, A.L., Du, J., Linton, J.D., Farnsworth, C.C., Sloat, S.R., Rountree, A., Sweet, I.R., Lindsay, K.J., Parker, E.D., Brockerhoff, S.E., Sadilek, M., Chao, J.R., Hurley, J.B.
- ID
- ZDB-PUB-170914-1
- Date
- 2017
- Source
- eLIFE 6: (Journal)
- Registered Authors
- Brockerhoff, Susan, Farnsworth, Dylan, Hurley, James B.
- Keywords
- biochemistry, mouse, neuroscience, zebrafish
- MeSH Terms
-
- Animals
- Humans
- Zebrafish
- Lactates/metabolism
- Photoreceptor Cells/metabolism
- Photoreceptor Cells/physiology*
- Retinal Pigment Epithelium/metabolism
- Retinal Pigment Epithelium/physiology*
- Ependymoglial Cells/metabolism
- Ependymoglial Cells/physiology*
- Adaptation, Ocular*
- Mice
- Glucose/metabolism
- Energy Metabolism*
- PubMed
- 28901286 Full text @ Elife
Citation
Kanow, M.A., Giarmarco, M.M., Jankowski, C.S., Tsantilas, K., Engel, A.L., Du, J., Linton, J.D., Farnsworth, C.C., Sloat, S.R., Rountree, A., Sweet, I.R., Lindsay, K.J., Parker, E.D., Brockerhoff, S.E., Sadilek, M., Chao, J.R., Hurley, J.B. (2017) Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. eLIFE. 6.
Abstract
Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping