PUBLICATION

Zebrafish mutations in gart and paics identify crucial roles for de novo purine synthesis in vertebrate pigmentation and ocular development

Authors
Ng, A., Uribe, R.A., Yieh, L., Nuckels, R., and Gross, J.M.
ID
ZDB-PUB-090706-19
Date
2009
Source
Development (Cambridge, England)   136(15): 2601-2611 (Journal)
Registered Authors
Gross, Jeffrey, Ng, Anthony, Nuckels, Richard, Uribe, Rosa
Keywords
De novo purine synthesis, Microphthalmia, Pigmentation, Zebrafish
MeSH Terms
  • Adenosine Triphosphate/metabolism
  • Animals
  • Apoptosis
  • Carboxy-Lyases/genetics*
  • Carboxy-Lyases/metabolism
  • Cell Proliferation
  • Embryo, Nonmammalian/metabolism
  • Embryo, Nonmammalian/pathology
  • Embryo, Nonmammalian/ultrastructure
  • Embryonic Development
  • Eye/embryology*
  • Eye/pathology
  • Eye/ultrastructure
  • Female
  • Gene Expression Regulation, Developmental
  • Guanosine Triphosphate/metabolism
  • Inosine Monophosphate/metabolism
  • Microphthalmos/genetics
  • Microphthalmos/pathology
  • Models, Biological
  • Mutation/genetics*
  • Peptide Synthases/genetics*
  • Peptide Synthases/metabolism
  • Phenotype
  • Phosphoribosylglycinamide Formyltransferase/genetics*
  • Phosphoribosylglycinamide Formyltransferase/metabolism
  • Pigmentation/genetics*
  • Pigments, Biological/biosynthesis
  • Purines/biosynthesis*
  • Retina/cytology
  • Retina/ultrastructure
  • S Phase
  • Zebrafish/embryology*
  • Zebrafish/genetics
  • Zebrafish Proteins/genetics*
  • Zebrafish Proteins/metabolism
PubMed
19570845 Full text @ Development
Abstract
Although purines and purinergic signaling are crucial for numerous biochemical and cellular processes, their functions during vertebrate embryonic development have not been well characterized. We analyze two recessive zebrafish mutations that affect de novo purine synthesis, gart and paics. gart encodes phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase, a trifunctional enzyme that catalyzes steps 2, 3 and 5 of inosine monophosphate (IMP) synthesis. paics encodes phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase, a bifunctional enzyme that catalyzes steps 6 and 7 of this process. Zygotic gart and paics mutants have pigmentation defects in which xanthophore and iridophore pigmentation is almost completely absent, and melanin-derived pigmentation is significantly decreased, even though pigment cells are present in normal amounts and distributions. Zygotic gart and paics mutants are also microphthalmic, resulting from defects in cell cycle exit of proliferative retinoblasts within the developing eye. Maternal-zygotic and maternal-effect mutants demonstrate a crucial requirement for maternally derived gart and paics; these mutants show more severe developmental defects than their zygotic counterparts. Pigmentation and eye growth phenotypes in zygotic gart and paics mutants can be ascribed to separable biosynthetic pathways: pigmentation defects and microphthalmia result from deficiencies in a GTP synthesis pathway and an ATP synthesis pathway, respectively. In the absence of ATP pathway activity, S phase of proliferative retinoblasts is prolonged and cell cycle exit is compromised, which results in microphthalmia. These results demonstrate crucial maternal and zygotic requirements for de novo purine synthesis during vertebrate embryonic development, and identify independent functions for ATP and GTP pathways in mediating eye growth and pigmentation, respectively.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping