ZFIN ID: ZDB-PUB-060616-41
Noise-resistant and synchronized oscillation of the segmentation clock
Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., and Takeda, H.
Date: 2006
Source: Nature   441(7094): 719-723 (Journal)
Registered Authors: Kondo, Shigeru, Takeda, Hiroyuki
Keywords: none
MeSH Terms:
  • Animals
  • Basic Helix-Loop-Helix Transcription Factors/metabolism
  • Biological Clocks/physiology*
  • Body Patterning/physiology*
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins/metabolism
  • Mitosis
  • Models, Biological
  • Receptors, Notch/metabolism
  • Signal Transduction
  • Somites/cytology
  • Somites/metabolism
  • Zebrafish/embryology*
  • Zebrafish/genetics
  • Zebrafish/physiology*
  • Zebrafish Proteins/metabolism
PubMed: 16760970 Full text @ Nature
FIGURES
ABSTRACT
Periodic somite segmentation in vertebrate embryos is controlled by the 'segmentation clock', which consists of numerous cellular oscillators. Although the properties of a single oscillator, driven by a hairy negative-feedback loop, have been investigated, the system-level properties of the segmentation clock remain largely unknown. To explore these characteristics, we have examined the response of a normally oscillating clock in zebrafish to experimental stimuli using in vivo mosaic experiments and mathematical simulation. We demonstrate that the segmentation clock behaves as a coupled oscillator, by showing that Notch-dependent intercellular communication, the activity of which is regulated by the internal hairy oscillator, couples neighbouring cells to facilitate synchronized oscillation. Furthermore, the oscillation phase of individual oscillators fluctuates due to developmental noise such as stochastic gene expression and active cell proliferation. The intercellular coupling was found to have a crucial role in minimizing the effects of this noise to maintain coherent oscillation.
ADDITIONAL INFORMATION