PUBLICATION

Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb

Authors
Thummel, R., Bai, S., Sarras, M.P. Jr, Song, P., McDermott, J., Brewer, J., Perry, M., Zhang, X., Hyde, D.R., and Godwin, A.R.
ID
ZDB-PUB-051114-6
Date
2006
Source
Developmental dynamics : an official publication of the American Association of Anatomists   235(2): 336-346 (Journal)
Registered Authors
Godwin, Alan, Hyde, David R., Sarras, Michael P., Jr., Thummel, Ryan, Zhang, Xiang Yi
Keywords
fgfr1, fin regeneration, in vivo electroporation, morpholino, msxb, zebrafish
MeSH Terms
  • Animals
  • Electroporation
  • Homeodomain Proteins/genetics*
  • Homeodomain Proteins/metabolism*
  • Receptors, Fibroblast Growth Factor/genetics*
  • Receptors, Fibroblast Growth Factor/metabolism*
  • Regeneration/physiology*
  • Zebrafish/anatomy & histology*
  • Zebrafish/physiology*
  • Zebrafish Proteins/genetics*
  • Zebrafish Proteins/metabolism*
PubMed
16273523 Full text @ Dev. Dyn.
Abstract
Increased interest in using zebrafish as a model organism has led to a resurgence of fin regeneration studies. This has allowed for the identification of a large number of gene families, including signaling molecules and transcription factors, which are expressed during regeneration. However, in cases where no specific inhibitor is available for the gene product of interest, determination of a functional role for these genes has been difficult. Here we demonstrate that in vivo electroporation of morpholino oligonucleotides is a feasible approach for protein knock-down during fin regeneration. Morpholino oligonucleotides against fgfr1 and msxb were utilized and knock-down of both proteins resulted in reduced fin outgrowth. Importantly, Fgfr1 knock-down phenocopied outgrowth inhibition obtained with an Fgfr1 inhibitor. Furthermore, this method provided direct evidence for a functional role for msxb in caudal fin regeneration. Finally, knock-down of Fgfr1, but not Msxb, affected the blastemal expression of msxc, suggesting this technique can be used to determine epistasis in genetic pathways affecting regeneration. Thus, this convenient reverse genetic approach allows researchers to quickly (1) assess the function of genes known to be expressed during fin regeneration, (2) screen genes for functional relevance during fin regeneration, and (3) assign genes to the molecular pathways underlying fin regeneration.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping