ZFIN ID: ZDB-PUB-161125-7
The Serotonergic System Tracks the Outcomes of Actions to Mediate Short-Term Motor Learning
Kawashima, T., Zwart, M.F., Yang, C.T., Mensh, B.D., Ahrens, M.B.
Date: 2016
Source: Cell   167: 933-946.e20 (Journal)
Registered Authors: Ahrens, Misha, Kawashima, Takashi, Yang, Chao-Tsung
Keywords: dorsal raphe nucleus, imaging, motor learning, neural circuits, neuromodulation, neuroscience, serotonergic system, serotonin, short-term memory, zebrafish
MeSH Terms:
  • Animals
  • Brain Mapping
  • Larva
  • Learning*
  • Models, Neurological*
  • Optogenetics
  • Raphe Nuclei/physiology
  • Serotonergic Neurons/cytology
  • Serotonergic Neurons/physiology
  • Spatial Processing
  • Swimming*
  • Zebrafish/physiology*
PubMed: 27881303 Full text @ Cell
To execute accurate movements, animals must continuously adapt their behavior to changes in theirĀ bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN's ability to track the effectiveness of motor intent may constitute a computational building blockĀ for the broader functions of the serotonergic system. VIDEO ABSTRACT.