PUBLICATION
            Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions
- Authors
- Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., Yonemura, S., Kawakami, K., and Itoh, M.
- ID
- ZDB-PUB-100625-27
- Date
- 2010
- Source
- Development (Cambridge, England) 137(15): 2527-2537 (Journal)
- Registered Authors
- Chitnis, Ajay, Crump, Gage DeKoeyer, Ishitani, Tohru, Itoh, Motoyuki, Kawakami, Koichi, Mizoguchi, Takamasa
- Keywords
- Mind bomb, Notch signalling, Notochord, Basement membrane, Muscle patterning, Zebrafish
- MeSH Terms
- 
    
        
        
            
                - Membrane Proteins/metabolism*
- 3T3 Cells
- Chlorocebus aethiops
- Animals
- Endocytosis
- Zebrafish Proteins/metabolism*
- Gene Expression Regulation, Developmental*
- Intercellular Signaling Peptides and Proteins/metabolism*
- Notochord/physiology*
- Calcium-Binding Proteins/metabolism*
- Two-Hybrid System Techniques
- Body Patterning*
- Receptors, Notch/metabolism*
- Cell Lineage*
- Ubiquitin/metabolism
- Models, Biological
- Ubiquitin-Protein Ligases/metabolism*
- Mice
- COS Cells
- Zebrafish
 
- PubMed
- 20573700 Full text @ Development
            Citation
        
        
            Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Matsumoto, K., Crump, J.G., Hozumi, K., Yonemura, S., Kawakami, K., and Itoh, M. (2010) Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development (Cambridge, England). 137(15):2527-2537.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                In the developing embryo, cell-cell signalling is necessary for tissue patterning and structural organization. During midline development, the notochord plays roles in the patterning of its surrounding tissues while forming the axial structure; however, how these patterning and structural roles are coordinated remains elusive. Here, we identify a mechanism by which Notch signalling regulates the patterning activities and structural integrity of the notochord. We found that Mind bomb (Mib) ubiquitylates Jagged 1 (Jag1) and is essential in the signal-emitting cells for Jag1 to activate Notch signalling. In zebrafish, loss- and gain-of-function analyses showed that Mib-Jag1-Notch signalling favours the development of non-vacuolated cells at the expense of vacuolated cells in the notochord. This leads to changes in the peri-notochordal basement membrane formation and patterning surrounding the muscle pioneer cells. These data reveal a previously unrecognized mechanism regulating the patterning and structural roles of the notochord by Mib-Jag1-Notch signalling-mediated cell-fate determination.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    