Gene
six4b
- ID
- ZDB-GENE-010201-1
- Name
- SIX homeobox 4b
- Symbol
- six4b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Predicted to be involved in regulation of transcription by RNA polymerase II. Predicted to act upstream of or within regulation of DNA-templated transcription. Predicted to be part of transcription regulator complex. Predicted to be active in nucleus. Is expressed in several structures, including anterior migratory muscle precursor stream; ectoderm; middle migratory muscle precursor stream; posterior migratory muscle precursor stream; and sensory system. Orthologous to human SIX4 (SIX homeobox 4).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 20 figures from 14 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
oz31 | Allele with one deletion | Unknown | Unknown | CRISPR | |
oz35 | Allele with one insertion | Unknown | Unknown | CRISPR | |
sa14754 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa15756 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa23674 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 5 of 5
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-six4b | Talbot et al., 2019 | |
CRISPR2-six4b | Talbot et al., 2019 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Homedomain-like superfamily | Homeobox, conserved site | Homeobox protein SIX1, N-terminal SD domain | Homeodomain |
---|---|---|---|---|---|
UniProtKB:Q9DEE7
|
615 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(six4b:mCherry) |
|
| 1 | (3) |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-225H23 | ZFIN Curated Data | |
Encodes | EST | fj32d01 | ZFIN Curated Data | |
Encodes | cDNA | MGC:76807 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131717 (1) | 2511 nt | ||
Genomic | GenBank:BX649231 (1) | 153569 nt | ||
Polypeptide | UniProtKB:Q9DEE7 (1) | 615 aa |
Species | Symbol | Chromosome | Accession # | Evidence |
---|---|---|---|---|
Human | SIX4 | 14 | Conserved genome location (synteny) (1) Amino acid sequence comparison (3) Phylogenetic tree (1) | |
Mouse | Six4 | 12 | Amino acid sequence comparison (2) Functional complementation (1) Coincident expression (1) Conserved genome location (synteny) (1) | |
Fruit fly | Six4 | 3L | Amino acid sequence comparison (1) |
- Talbot, J.C., Teets, E.M., Ratnayake, D., Duy, P.Q., Currie, P.D., Amacher, S.L. (2019) Muscle precursor cell movements in zebrafish are dynamic and require six-family genes. Development (Cambridge, England). 146(10):
- Hu, P., Liu, M., Liu, Y., Wang, J., Zhang, D., Niu, H., Jiang, S., Wang, J., Zhang, D., Han, B., Xu, Q., Chen, L. (2016) Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish. Scientific Reports. 6:28952
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Gómez-Marín, C., Tena, J.J., Acemel, R.D., López-Mayorga, M., Naranjo, S., de la Calle-Mustienes, E., Maeso, I., Beccari, L., Aneas, I., Vielmas, E., Bovolenta, P., Nobrega, M.A., Carvajal, J., Gómez-Skarmeta, J.L. (2015) Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proceedings of the National Academy of Sciences of the United States of America. 112(24):7542-7
- Ogawa, Y., Shiraki, T., Kojima, D., Fukada, Y. (2015) Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish. Proceedings. Biological sciences. 282(1812):20150659
- Zhang, H., Wang, X., Lv, K., Gao, S., Wang, G., Fan, C., Zhang, X.A., Yan, J. (2015) Time Point-based Integrative Analyses of Deep-transcriptome Identify Four Signal Pathways in Blastemal Regeneration of Zebrafish Lower Jaw. Stem cells (Dayton, Ohio). 33(3):806-18
- Yao, D., Zhao, F., Wu, Y., Wang, J., Wei, D., Zhao, J., Zhu, Z., Liu, D. (2014) Dissecting the differentiation process of the pre-placodal ectoderm in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 243(10):1338-51
- Armant, O., März, M., Schmidt, R., Ferg, M., Diotel, N., Ertzer, R., Bryne, J.C., Yang, L., Baader, I., Reischl, M., Legradi, J., Mikut, R., Stemple, D., Ijcken, W.V., van der Sloot, A., Lenhard, B., Strähle, U., and Rastegar, S. (2013) Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Developmental Biology. 380(2):351-62
- Bhat, N., Kwon, H.J., and Riley, B.B. (2013) A gene network that coordinates preplacodal competence and neural crest specification in zebrafish. Developmental Biology. 373(1):107-117
- Miyasaka, N., Wanner, A.A., Li, J., Mack-Bucher, J., Genoud, C., Yoshihara, Y., and Friedrich, R.W. (2013) Functional development of the olfactory system in zebrafish. Mechanisms of Development. 130(6-8):336-46
1 - 10 of 29
Show