Gene
fzd8a
- ID
- ZDB-GENE-000328-3
- Name
- frizzled class receptor 8a
- Symbol
- fzd8a Nomenclature History
- Previous Names
-
- fz5
- fz8a
- fzc
- wu:fd02c05
- zfzc
- zg05
- Type
- protein_coding_gene
- Location
- Chr: 24 Mapping Details/Browsers
- Description
- Predicted to enable Wnt receptor activity and Wnt-protein binding activity. Acts upstream of or within canonical Wnt signaling pathway; eye field cell fate commitment involved in camera-type eye formation; and neurogenesis. Predicted to be located in membrane. Predicted to be active in plasma membrane. Is expressed in several structures, including digestive system; mesoderm; nervous system; neural keel; and pectoral fin. Orthologous to human FZD8 (frizzled class receptor 8).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 22 figures from 11 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:65761 (26 images)
Wild Type Expression Summary
- All Phenotype Data
- 12 figures from 4 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa5986 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa24435 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa37811 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa37812 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa44076 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa44077 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa44078 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sdu7 | Allele with one deletion | Exon 1 | Frameshift, Premature Stop | TALEN |
1 - 8 of 8
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-fzd8a | N/A | (4) |
MO2-fzd8a | N/A | Choe et al., 2013 |
TALEN1-fzd8a | (2) |
1 - 3 of 3
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Frizzled 8, cysteine-rich domain | Frizzled cysteine-rich domain superfamily | Frizzled domain | Frizzled/secreted frizzled-related protein | Frizzled/Smoothened, 7TM | GPCR, family 2-like, 7TM |
---|---|---|---|---|---|---|---|
UniProtKB:Q9YI00
|
579 |
1 - 1 of 1
Interactions and Pathways
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(hsp70l:fzd8a-EGFP) |
|
| 1 | (7) |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-18N12 | ZFIN Curated Data | |
Contains | SNP | rs3729310 | Stickney et al., 2002 | |
Encodes | EST | fd02c05 | ZFIN Curated Data | |
Encodes | cDNA | MGC:65761 | ZFIN Curated Data | |
Encodes | cDNA | MGC:77586 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_130918 (1) | 2628 nt | ||
Genomic | GenBank:BX004842 (2) | 193257 nt | ||
Polypeptide | UniProtKB:Q9YI00 (1) | 579 aa |
- Powell, G.T., Faro, A., Zhao, Y., Stickney, H., Novellasdemunt, L., Henriques, P., Gestri, G., Redhouse White, E., Ren, J., Lu, W., Young, R.M., Hawkins, T.A., Cavodeassi, F., Schwarz, Q., Dreosti, E., Raible, D.W., Li, V.S.W., Wright, G.J., Jones, E.Y., Wilson, S.W. (2024) Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science (New York, N.Y.). 384:573579573-579
- Song, G., Feng, G., Li, Q., Peng, J., Ge, W., Long, Y., Cui, Z. (2024) Transcriptomic Characterization of Key Factors and Signaling Pathways for the Regeneration of Partially Hepatectomized Liver in Zebrafish. International Journal of Molecular Sciences. 25(13):
- Brown-Panton, C.A., Sabour, S., Zoidl, G.S.O., Zoidl, C., Tabatabaei, N., Zoidl, G.R. (2023) Gap junction Delta-2b (gjd2b/Cx35.1) depletion causes hyperopia and visual-motor deficiencies in the zebrafish. Frontiers in cell and developmental biology. 11:11502731150273
- Emmerich, K., Walker, S.L., Wang, G., White, D.T., Ceisel, A., Wang, F., Teng, Y., Chunawala, Z., Graziano, G., Nimmagadda, S., Saxena, M.T., Qian, J., Mumm, J.S. (2023) Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses. PLoS Genetics. 19:e1010905e1010905
- Yao, J., Cai, Y., Chen, Z., Wang, X., Lai, X., Pan, L., Li, Y., Wang, S. (2023) DExH/D RNA helicase 15 regulates zebrafish intestinal development through the Wnt signaling pathway. Genomics. 115(2):110578
- Westphal, M., Panza, P., Kastenhuber, E., Wehrle, J., Driever, W. (2022) Wnt/β-catenin signaling promotes neurogenesis in the diencephalospinal dopaminergic system of embryonic zebrafish. Scientific Reports. 12:1030
- Abu Nahia, K., Migdał, M., Quinn, T.A., Poon, K.L., Łapiński, M., Sulej, A., Liu, J., Mondal, S.S., Pawlak, M., Bugajski, Ł., Piwocka, K., Brand, T., Kohl, P., Korzh, V., Winata, C. (2021) Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cellular and molecular life sciences : CMLS. 78(19-20):6669-6687
- Peron, M., Dinarello, A., Meneghetti, G., Martorano, L., Facchinello, N., Vettori, A., Licciardello, G., Tiso, N., Argenton, F. (2020) The stem-like STAT3-responsive cells of zebrafish intestine are WNT/β-catenin dependent. Development (Cambridge, England). 147(12):
- Azbazdar, Y., Ozalp, O., Sezgin, E., Veerapathiran, S., Duncan, A.L., Sansom, M.S.P., Eggeling, C., Wohland, T., Karaca, E., Ozhan, G. (2019) More Favorable Palmitic Acid Over Palmitoleic Acid Modification of Wnt3 Ensures Its Localization and Activity in Plasma Membrane Domains. Frontiers in cell and developmental biology. 7:281
- Grainger, S., Nguyen, N., Richter, J., Setayesh, J., Lonquich, B., Oon, C.H., Wozniak, J.M., Barahona, R., Kamei, C.N., Houston, J., Carrillo-Terrazas, M., Drummond, I.A., Gonzalez, D., Willert, K., Traver, D. (2019) EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells. Nature cell biology. 21(6):721-730
1 - 10 of 45
Show