FIGURE

Fig. 1

ID
ZDB-FIG-200306-9
Publication
Lee et al., 2020 - Regenerating zebrafish fin epigenome is characterized by stable lineage-specific DNA methylation and dynamic chromatin accessibility
Other Figures
All Figure Page
Back to All Figure Page
Fig. 1

Lineage-specific DNA methylation signatures are stably maintained during fin regeneration. a Experimental scheme of sorting sp7+ and sp7− cells from uninjured and regenerating zebrafish fin by using FACS. b Global CpG methylation levels (mCG/CG) and fraction of total CpGs with low (< 25%), medium (≥ 25% and < 75%), and high (≥ 75%) methylation levels of sp7+ and sp7− cells during zebrafish fin regeneration. c Distribution of genome-wide CpG methylation levels of each cell type. Bimodal distribution of two CpG populations at high and low methylation levels is observed. d Number of DMRs identified between two biological replicates (gray bars), between two different time points in the same cell type (regeneration-specific, yellow bars) or between two different cell types at the same time point (cell-type-specific, blue bars). e ATAC-seq signals (top) and DNA methylation levels (bottom) over 10-kb regions centered on a total of 2883 sp7+ cell-specific hypoDMRs. Average ATAC-seq signals were plotted on top of each heatmap (line plots). f Venn diagram of sp7+ cell-specific hypoDMRs (blue and green circles for 0 dpa and 4 dpa, respectively) intersecting with potential regeneration-specific DMRs in sp7+ cells (yellow filled circle). Only 30 (1.0%) of sp7+ cell-specific hypoDMRs were predicted as potential regeneration-specific DMRs

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Genome Biol.