FIGURE

Fig. 6

ID
ZDB-FIG-140411-24
Publication
Kim et al., 2014 - Gas6 stimulates angiogenesis of human retinal endothelial cells and of zebrafish embryos via ERK1/2 signaling
Other Figures
All Figure Page
Back to All Figure Page
Fig. 6

Disruption of Gas6 signaling via the ERK pathway resulted in defective angiogenesis in HRMECs and in zebrafish.

(A) U0126 was preincubated for 30 min, and HRMEC responses to rhGas6 or rhVEGF were determined using a scratch-wound healing assay. Lines indicate the same width of the gap, and migrating cells are marked with a red asterisk. Representative images at 6 h after generating the scratch are shown. The experiment was repeated three times. ***p<0.001, **p<0.01 vs. control, ###p<0.001, #p<.05 vs. U0126-treated cells. (B) At 30 h, fluorescent images show gross morphology of Ctrl-MO injected control (n = 34), gas6-morpholino [EX5-MO (n = 35), EX7-MO (n = 30)] injected, and SB203580 (n = 12), or PD98059 (n = 12), or U0126 (n = 12) treated embryos. The experiment was repeated two times. Fluorescent micrographs of live flk:GFP zebrafish Ctrl-MO embryos at 30 hpf. Note the proper formation of the major axial vasculature, dorsal aorta, and posterior cardinal vein, as well as the intersegmental vessel. Representative embryos treated with gas6-MO oligonucleotide, SB203580, PD98059, or U0126. Note the abnormal and stunted formation of the intersegmental vessel (longitudinal white bar in B). Representative mild defect of intersegmental vessels in the embryos treated with SB203580. ***p<0.001, *p<0.05 vs. Ctrl-MO.

Expression Data
Gene:
Fish:
Condition:
Knockdown Reagents:
Anatomical Terms:
Stage: Prim-15

Expression Detail
Antibody Labeling
Phenotype Data
Fish:
Condition:
Knockdown Reagents:
Observed In:
Stage: Prim-15

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS One