FIGURE

Fig. 5

ID
ZDB-FIG-130827-13
Publication
Veldman et al., 2013 - Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor etv2
Other Figures
All Figure Page
Back to All Figure Page
Fig. 5

Etv2 cell autonomously initiates transdifferentiation of muscle cells.

(A) Blastula cell transplantation was performed from triple transgenic, mylpfa:mRFP/hsp70l:etv2/kdrl:GFP+, into wild-type embryos. Approximately 10 cells were transplanted per embryo. Transplanted embryos were raised until 22 hpf, at which point they were selected for embryos displaying mylpfa:mRFP expression in distinct regions absent in kdrl:GFP, region of interest (ROI) boxed in (B) corresponds to images in (C). These embryos were then either heat shocked or left as no heat shock controls. Embryos were then analyzed for mylpfa:mRFP/kdrl:GFP coexpression at 10 h post–heat shock and followed out to 42 h post–heat shock (C). A muscle cell labeled with the arrow undergoes transdifferentiation to form a lumenized vessel (C). (D) Quantification of transdifferentiation efficiency per muscle cell. Only clearly distinguishable muscle cells were counted. Thirty-eight chimeric embryos, 312 total cells, were observed in the heat-shocked condition, and 20 chimeric embryos, 143 total cells, were observed for the control non–heat shocked condition.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Biol.