Gene
ephb3a
- ID
- ZDB-GENE-990415-60
- Name
- eph receptor B3a
- Symbol
- ephb3a Nomenclature History
- Previous Names
-
- ek3
- epha3a
- rtk3 (1)
- zek3
- fc62d03
- wu:fc62d03
- Type
- protein_coding_gene
- Location
- Chr: 2 Mapping Details/Browsers
- Description
- Predicted to enable ephrin receptor activity. Predicted to be involved in several processes, including ephrin receptor signaling pathway; neuron projection development; and substrate adhesion-dependent cell spreading. Predicted to act upstream of or within nervous system development and protein phosphorylation. Predicted to be located in dendrite and membrane. Predicted to be part of receptor complex. Predicted to be active in plasma membrane. Is expressed in several structures, including anterior neural keel; central nervous system; hypoblast; immature eye; and mesoderm. Orthologous to human EPHB3 (EPH receptor B3).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 20 figures from 7 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7144764 (9 images)
- eu875 (15 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la015043Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la023843Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa18039 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa19672 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa19673 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa39770 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 6 of 6
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-ephb3a | Trejo-Reveles et al., 2023 | |
MO1-ephb3a | N/A | Zhang et al., 2016 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Active_site | IPR008266 | Tyrosine-protein kinase, active site |
Binding_site | IPR017441 | Protein kinase, ATP binding site |
Conserved_site | IPR001426 | Tyrosine-protein kinase, receptor class V, conserved site |
Domain | IPR000719 | Protein kinase domain |
Domain | IPR001090 | Ephrin receptor ligand binding domain |
1 - 5 of 18 Show all
Domain Details Per Protein
Protein | Length | Ephrin receptor ligand binding domain | Ephrin receptor, transmembrane domain | Ephrin receptor type-A /type-B | Ephrin receptor tyrosine kinases | Ephrin type-B receptor 3, ligand binding domain | Fibronectin type III | Fibronectin type III superfamily | Galactose-binding-like domain superfamily | Growth factor receptor cysteine-rich domain superfamily | Immunoglobulin-like fold | Protein kinase, ATP binding site | Protein kinase domain | Protein kinase-like domain superfamily | Serine-threonine/tyrosine-protein kinase, catalytic domain | Sterile alpha motif domain | Tyrosine-protein kinase, active site | Tyrosine-protein kinase, catalytic domain | Tyrosine-protein kinase, receptor class V, conserved site |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M6Z0S5
|
961 | ||||||||||||||||||
UniProtKB:A0A8M3AP95
|
659 | ||||||||||||||||||
UniProtKB:O13147
|
500 | ||||||||||||||||||
UniProtKB:Q90ZN8
|
923 |
1 - 4 of 4
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
ephb3a-201
(1)
|
Ensembl | 4,322 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-150C8 | ZFIN Curated Data | |
Contained in | BAC | CH211-189E22 | ZFIN Curated Data | |
Encodes | EST | eu875 | Thisse et al., 2005 | |
Encodes | EST | fc62d03 | ||
Encodes | EST | IMAGE:7144764 | Thisse et al., 2004 |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131097 (1) | 4328 nt | ||
Genomic | GenBank:CT583648 (2) | 108644 nt | ||
Polypeptide | UniProtKB:A0A8M6Z0S5 (1) | 961 aa |
- Trejo-Reveles, V., Owen, N., Ching Chan, B.H., Toms, M., Schoenebeck, J.J., Moosajee, M., Rainger, J., Genomics England Research Consortium (2023) Identification of Novel Coloboma Candidate Genes through Conserved Gene Expression Analyses across Four Vertebrate Species. Biomolecules. 13(2):
- Zheng, Y.Q., Suo, G.H., Liu, D., Li, H.Y., Wu, Y.J., Ni, H. (2022) Nexmifa Regulates Axon Morphogenesis in Motor Neurons in Zebrafish. Frontiers in molecular neuroscience. 15:848257
- Garcia-Concejo, A., Larhammar, D. (2021) Protein kinase C family evolution in jawed vertebrates. Developmental Biology. 479:77-90
- Silic, M.R., Black, M.M., Zhang, G. (2021) Phylogenetic and developmental analyses indicate complex functions of Calcium-Activated Potassium Channels in zebrafish embryonic development. Developmental Dynamics : an official publication of the American Association of Anatomists. 250(10):1477-1493
- Takamiya, M., Stegmaier, J., Kobitski, A.Y., Schott, B., Weger, B.D., Margariti, D., Cereceda Delgado, A.R., Gourain, V., Scherr, T., Yang, L., Sorge, S., Otte, J.C., Hartmann, V., van Wezel, J., Stotzka, R., Reinhard, T., Schlunck, G., Dickmeis, T., Rastegar, S., Mikut, R., Nienhaus, G.U., Strähle, U. (2020) Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genetics. 16:e1008774
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Xiao, Y., Jiang, J., Hu, W., Zhao, Y., Hu, J. (2017) Toxicity of triphenyltin on the development of retinal axons in zebrafish at low dose. Aquatic toxicology (Amsterdam, Netherlands). 189:9-15
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Zhang, J.F., Jiang, Z., Liu, X., Meng, A. (2016) Eph-ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development (Cambridge, England). 143(14):2603-15
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
1 - 10 of 22
Show