Gene
rdh10a
- ID
- ZDB-GENE-070112-2242
- Name
- retinol dehydrogenase 10a
- Symbol
- rdh10a Nomenclature History
- Previous Names
-
- wu:fb92b11
- zgc:158459 (1)
- Type
- protein_coding_gene
- Location
- Chr: 24 Mapping Details/Browsers
- Description
- Predicted to enable oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor. Acts upstream of or within retinoic acid biosynthetic process. Predicted to be located in endoplasmic reticulum membrane. Predicted to be active in lipid droplet. Is expressed in several structures, including margin; mesoderm; nervous system; optic fissure; and optic vesicle. Orthologous to human RDH10 (retinol dehydrogenase 10).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 13 figures from 7 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7159829 (18 images)
Wild Type Expression Summary
- All Phenotype Data
- 3 figures from D'Aniello et al., 2015
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa8453 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-rdh10a | N/A | D'Aniello et al., 2015 |
MO2-rdh10a | N/A | D'Aniello et al., 2015 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | NAD(P)-binding domain superfamily | Short-chain dehydrogenase/reductase, conserved site | Short-chain dehydrogenase/reductase SDR |
---|---|---|---|---|---|
UniProtKB:A1L1W4 | InterPro | 339 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
rdh10a-201
(1)
|
Ensembl | 2,361 nt | ||
mRNA |
rdh10a-203
(1)
|
Ensembl | 518 nt | ||
ncRNA |
rdh10a-003
(1)
|
Ensembl | 749 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-171B20 | ZFIN Curated Data | |
Encodes | EST | fb92b11 | ||
Encodes | EST | IMAGE:7159829 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:158459 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001080583 (1) | 2663 nt | ||
Genomic | GenBank:CR318587 (2) | 164331 nt | ||
Polypeptide | UniProtKB:A1L1W4 (1) | 339 aa |
- Lan, Y., Pan, H., Li, C., Banks, K.M., Sam, J., Ding, B., Elemento, O., Goll, M.G., Evans, T. (2019) TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Reports. 26:720-732.e4
- Xiong, G., Deng, Y., Li, J., Cao, Z., Liao, X., Liu, Y., Lu, H. (2019) Immunotoxicity and transcriptome analysis of zebrafish embryos in response to glufosinate-ammonium exposure. Chemosphere. 236:124423
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Valdivia, L.E., Lamb, D.B., Horner, W., Wierzbicki, C., Tafessu, A., Williams, A.M., Gestri, G., Krasnow, A.M., Vleeshouwer-Neumann, T.S., Givens, M., Young, R.M., Lawrence, L.M., Stickney, H.L., Hawkins, T.A., Schwarz, Q.P., Cavodeassi, F., Wilson, S.W., Cerveny, K.L. (2016) Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development (Cambridge, England). 143(7):1087-98
- D'Aniello, E., Ravisankar, P., Waxman, J.S. (2015) Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis. PLoS One. 10:e0138588
- Rydeen, A., Voisin, N., D'Aniello, E., Ravisankar, P., Devignes, C.S., Waxman, J.S. (2015) Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling. Developmental Biology. 405(1):47-55
- Cardozo, M.J., Sánchez-Arrones, L., Sandonis, A., Sánchez-Camacho, C., Gestri, G., Wilson, S.W., Guerrero, I., Bovolenta, P. (2014) Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nature communications. 5:4272
- D'Aniello, E., Rydeen, A.B., Anderson, J.L., Mandal, A., and Waxman, J.S. (2013) Depletion of Retinoic Acid Receptors Initiates a Novel Positive Feedback Mechanism that Promotes Teratogenic Increases in Retinoic Acid. PLoS Genetics. 9(8):e1003689
- Blum, N., and Begemann, G. (2012) Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development (Cambridge, England). 139(1):107-16
- Lupo, G., Gestri, G., O'Brien, M., Denton, R.M., Chandraratna, R.A., Ley, S.V., Harris, W.A., and Wilson, S.W. (2011) Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme. Proceedings of the National Academy of Sciences of the United States of America. 108(21):8698-8703
1 - 10 of 14
Show