PUBLICATION

Biallelic PTPMT1 variants disrupt cardiolipin metabolism and lead to a neurodevelopmental syndrome

Authors
Falabella, M., Pizzamiglio, C., Tabara, L.C., Munro, B., Abdel-Hamid, M.S., Sonmezler, E., Macken, W.L., Lu, S., Tilokani, L., Flannery, P.J., Patel, N., Pope, S.A.S., Heales, S.J.R., Hammadi, D.B.H., Alston, C.L., Taylor, R.W., Lochmuller, H., Woodward, C.E., Labrum, R., Vandrovcova, J., Houlden, H., Chronopoulou, E., Pierre, G., Maroofian, R., Hanna, M.G., Taanman, J.W., Hiz, S., Oktay, Y., Zaki, M.S., Horvath, R., Prudent, J., Pitceathly, R.D.S.
ID
ZDB-PUB-240916-13
Date
2024
Source
Brain : a journal of neurology : (Journal)
Registered Authors
Horvath, Rita
Keywords
cardiolipin, mitochondria, mitochondrial dynamics, neurodevelopmental syndrome, primary mitochondrial disease
MeSH Terms
  • Child
  • Mitochondrial Diseases/genetics
  • Mitochondrial Diseases/metabolism
  • Male
  • Female
  • Neurodevelopmental Disorders*/genetics
  • Neurodevelopmental Disorders*/metabolism
  • Humans
  • Cardiolipins*/metabolism
  • Infant
  • Animals
  • Child, Preschool
  • Zebrafish*
  • Mitochondria/genetics
  • Mitochondria/metabolism
  • Pedigree
PubMed
39279645 Full text @ Brain
Abstract
Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping