FIGURE SUMMARY
Title

Establishment of Larval Zebrafish as an Animal Model to Investigate Trypanosoma cruzi Motility In Vivo

Authors
Akle, V., Agudelo-Dueñas, N., Molina-Rodriguez, M.A., Kartchner, L.B., Ruth, A.M., González, J.M., Forero-Shelton, M.
Source
Full text @ J. Vis. Exp.

Figure 1: Optimal injection site. (A) Image of larva 48 hpf showing the optimal injection site at the duct of Cuvier (yellow arrow) using a regular stereoscope. (B) Magnified view of box in A showing the duct of Cuvier (yellow arrow). Scale bar = 200 µm (A), 50 µm (B).

Figure 2: LSFM images of a static parasite in a 48 hpf larva. The T. cruzi parasite (yellow arrow) remains adhered to the walls of the yolk sac, throughout the time-lapse sequence (7.2 s, 17.2 s, and 27.2 s), about ~15 min after parasite injection. No change in position of the parasite is observed during an acquisition period of at least 30 s. a, Atrium; v, Ventricle. Scale bar = 50 µm.

Figure 3: Trajectory of a parasite traveling in the pericardial space using LSFM. The T. cruzi parasite can be tracked while drifting in the pericardial space (PS), following the direction of blood flow (track shown in red) about ~15 min after parasite injection. Scale bar = 50 µm.

Supplemental Figure 1: Accumulation of CFSE fluorescent signal in the yolk. Stereoscope images of a wildtype larva injected at 48 hpf at the duct of Cuvier. CFSE fluorescent signal progressively accumulates in the yolk, after two days post injection (48 hpi). Scale bar = 500 µm.

Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ J. Vis. Exp.