Gene
entpd5b
- ID
- ZDB-GENE-091118-88
- Name
- ectonucleoside triphosphate diphosphohydrolase 5b
- Symbol
- entpd5b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable ATP binding activity and nucleoside diphosphate phosphatase activity. Predicted to be located in endoplasmic reticulum and extracellular region. Is expressed in brain; heart; and liver. Orthologous to human ENTPD5 (ectonucleoside triphosphate diphosphohydrolase 5 (inactive)).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Rosemberg et al., 2010
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la010300Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la013948Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Family | IPR000407 | Nucleoside phosphatase GDA1/CD39 |
1 - 1 of 1
Domain Details Per Protein
Protein | Length | Nucleoside phosphatase GDA1/CD39 |
---|---|---|
UniProtKB:E9QI88
|
438 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
entpd5b-201
(1)
|
Ensembl | 2,453 nt | ||
mRNA |
entpd5b-202
(1)
|
Ensembl | 1,413 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-387E10 |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_002665820 (1) | 2603 nt | ||
Genomic | GenBank:CU856543 (1) | 51937 nt | ||
Polypeptide | UniProtKB:E9QI88 (1) | 438 aa |
- Nie, C.H., Wan, S.M., Chen, Y.L., Huysseune, A., Wu, Y.M., Zhou, J.J., Hilsdorf, A.W.S., Wang, W.M., Witten, P.E., Lin, Q., Gao, Z.X. (2022) Single-cell transcriptomes and runx2b-/- mutants reveal the genetic signatures of intermuscular bone formation in zebrafish. National science review. 9:nwac152nwac152
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Rosemberg, D.B., Rico, E.P., Langoni, A.S., Spinelli, J.T., Pereira, T.C., Dias, R.D., Souza, D.O., Bonan, C.D., and Bogo, M.R. (2010) NTPDase family in zebrafish: Nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 155(3):230-240
- Yue, R., Kang, J., Zhao, C., Hu, W., Tang, Y., Liu, X., and Pei, G. (2009) Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group repression. Cell. 139(3):535-546
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 7 of 7
Show