Gene
grin3ba
- ID
- ZDB-GENE-070912-354
- Name
- glutamate receptor, ionotropic, N-methyl-D-aspartate 3Ba
- Symbol
- grin3ba Nomenclature History
- Previous Names
-
- grin3b
- si:dkey-119n4.1 (1)
- Type
- protein_coding_gene
- Location
- Chr: 2 Mapping Details/Browsers
- Description
- Predicted to enable glutamate receptor activity and transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potential. Predicted to contribute to NMDA glutamate receptor activity. Predicted to be involved in glutamatergic synaptic transmission; ionotropic glutamate receptor signaling pathway; and modulation of chemical synaptic transmission. Predicted to act upstream of or within monoatomic ion transmembrane transport. Predicted to be located in postsynaptic membrane. Predicted to be active in postsynaptic density membrane. Orthologous to human GRIN3B (glutamate ionotropic receptor NMDA type subunit 3B).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la014878Tg | Transgenic insertion | Unknown | Unknown | DNA | |
nf1 | Allele with one deletion | Exon 1 | Unknown | CRISPR | |
sa25813 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa38334 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 4 of 4
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-grin3ba | Zebrafish Nomenclature Committee |
1 - 1 of 1
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR001320 | Ionotropic glutamate receptor, C-terminal |
Domain | IPR019594 | Ionotropic glutamate receptor, L-glutamate and glycine-binding domain |
Family | IPR001508 | Ionotropic glutamate receptor, metazoa |
Family | IPR015683 | Ionotropic glutamate receptor |
Homologous_superfamily | IPR028082 | Periplasmic binding protein-like I |
Domain Details Per Protein
Protein | Additional Resources | Length | Ionotropic glutamate receptor | Ionotropic glutamate receptor, C-terminal | Ionotropic glutamate receptor, L-glutamate and glycine-binding domain | Ionotropic glutamate receptor, metazoa | Periplasmic binding protein-like I |
---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9P9F6 | InterPro | 1118 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
grin3ba-201
(1)
|
Ensembl | 4,090 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-253D24 | ZFIN Curated Data | |
Contained in | BAC | DKEY-119N4 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_021467383 (1) | |||
Genomic | GenBank:CR392012 (1) | 97633 nt | ||
Polypeptide | UniProtKB:A0A8M9P9F6 (1) | 1118 aa |
- Sheets, L. (2017) Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation. Scientific Reports. 7:41102
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Mei, W., Lee, K.W., Marlow, F.L., Miller, A.L., and Mullins, M.C. (2009) hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish. Development (Cambridge, England). 136(17):3007-3017
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 5 of 5
Show