Gene
smarcb1a
- ID
- ZDB-GENE-041114-5
- Name
- SWI/SNF related BAF chromatin remodeling complex subunit B1a
- Symbol
- smarcb1a Nomenclature History
- Previous Names
-
- zgc:92517 (1)
- Type
- protein_coding_gene
- Location
- Chr: 8 Mapping Details/Browsers
- Description
- Predicted to enable DNA binding activity and transcription coactivator activity. Predicted to be involved in chromatin remodeling and regulation of transcription by RNA polymerase II. Predicted to be located in nuclear chromosome. Predicted to be part of brahma complex; nBAF complex; and npBAF complex. Predicted to be active in nucleus. Human ortholog(s) of this gene implicated in Coffin-Siris syndrome 3; meningioma; rhabdoid cancer; rhabdoid tumor predisposition syndrome 1; and schwannomatosis (multiple). Orthologous to human SMARCB1 (SWI/SNF related BAF chromatin remodeling complex subunit B1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Thisse et al., 2004
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7152185 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la026498Tg | Transgenic insertion | Unknown | Unknown | DNA | |
zdf47 | Allele with one deletion | Exon 2 | Unknown | CRISPR | |
zdf48 | Allele with one deletion | Exon 3 | Unknown | CRISPR |
1 - 3 of 3
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-smarcb1a | Oppel et al., 2022 | |
CRISPR2-smarcb1a | Oppel et al., 2022 | |
MO1-smarcb1a | N/A | Huang et al., 2013 |
1 - 3 of 3
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Coffin-Siris syndrome 3 | Alliance | Coffin-Siris syndrome 3 | 614608 |
rhabdoid tumor predisposition syndrome 1 | Alliance | Rhabdoid tumors, somatic | 609322 |
rhabdoid tumor predisposition syndrome 1 | Alliance | {Rhabdoid tumor predisposition syndrome 1} | 609322 |
schwannomatosis 1 | Alliance | {Schwannomatosis-1, susceptibility to} | 162091 |
1 - 4 of 4
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | Chromatin-remodeling complex component Sfh1/SNF5 | SNF5/SMARCB1/INI1 | SWI/SNF Subunit INI1, DNA binding domain |
---|---|---|---|---|
UniProtKB:F6NQ54
|
||||
UniProtKB:Q5U379
|
373 | |||
UniProtKB:A8WG87
|
366 |
1 - 3 of 3
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
smarcb1a-201
(1)
|
Ensembl | 1,512 nt | ||
mRNA |
smarcb1a-202
(1)
|
Ensembl | 756 nt | ||
mRNA |
smarcb1a-203
(1)
|
Ensembl | 1,469 nt |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-42D10 | ZFIN Curated Data | |
Contained in | BAC | CH211-251J10 | ZFIN Curated Data | |
Encodes | EST | IMAGE:7152185 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:92517 | ZFIN Curated Data | |
Encodes | cDNA | MGC:172261 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001007296 (1) | 1486 nt | ||
Genomic | GenBank:BX640478 (1) | 191201 nt | ||
Polypeptide | UniProtKB:Q5U379 (1) | 373 aa |
- Oppel, F., Shao, S., Gendreizig, S., Zimmerman, M.W., Schürmann, M., Viyof Ful, F., Goon, P., Chi, S.N., Aster, J.C., Sudhoff, H., Look, A.T. (2022) p53 pathway inactivation drives SMARCB1-deficient p53-wildtype epithelioid sarcoma onset indicating therapeutic vulnerability through MDM2 inhibition. Molecular cancer therapeutics. 21(11):1689-1700
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Huang, H.T., Kathrein, K.L., Barton, A., Gitlin, Z., Huang, Y.H., Ward, T.P., Hofmann, O., Dibiase, A., Song, A., Tyekucheva, S., Hide, W., Zhou, Y., and Zon, L.I. (2013) A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nature cell biology. 15(12):1516-1525
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 6 of 6
Show