PUBLICATION

The effect and underlying mechanism of yeast β-glucan on antiviral resistance of zebrafish against spring viremia of carp virus infection

Authors
Liang, H., Li, Y., Li, M., Zhou, W., Chen, J., Zhang, Z., Yang, Y., Ran, C., Zhou, Z.
ID
ZDB-PUB-221122-9
Date
2022
Source
Frontiers in immunology   13: 1031962 (Journal)
Registered Authors
Zhou, Zhigang
Keywords
SVCV, antiviral immunity, gut microbiota, zebrafish, β-glucan
MeSH Terms
  • Animals
  • Antiviral Agents
  • Carps*
  • RNA, Ribosomal, 16S
  • Rhabdoviridae Infections*
  • Saccharomyces cerevisiae
  • Viremia
  • Zebrafish
  • beta-Glucans*/pharmacology
PubMed
36405758 Full text @ Front Immunol
Abstract
β-glucan has been used as immunostimulant for fish. However, the effect of yeast β-glucan on viral infections has been less studied in fish. In this study, we investigated the effects of β-glucan on the resistance of zebrafish against spring viraemia of carp virus (SVCV) and elucidated the underlying mechanisms. Zebrafish were fed with a control diet or diet supplemented with 0.01% and 0.025% β-glucan for 2 weeks, and were challenged by SVCV. Zebrafish embryonic fibroblast (ZF4) cells were treated with 5 μg/mL β-glucan and were infected by SVCV. We further investigated the effect of β-glucan on autophagy level post SVCV infection. The intestinal microbiota was evaluated by 16S rRNA gene pyrosequencing. Results showed that dietary supplementation of 0.025% β-glucan significantly increased survival rate of zebrafish compared with control group after SVCV challenge (P < 0.05). Dietary β-glucan significantly increased the expression of genes related to type I IFN antiviral immune pathway in the spleen of zebrafish after viral infection, including type I IFN genes (ifnφ1, ifnφ2, ifnφ3), IFN-stimulated genes (mxb, mxc), as well as other genes involved in the IFN signaling pathway, including tlr7, rig1, mavs, irf3 and irf7. Morpholino knockdown of type I IFN receptors dampened the antiviral effect of β-glucan in zebrafish larvae, indicating that β-glucan-mediated antiviral function was at least partially dependent on IFN immune response. Furthermore, β-glucan can inhibit the replication of SVCV in ZF4 cells. However, β-glucan did not stimulate type I IFN antiviral response in ZF4 cells, and the antiviral effect of β-glucan in ZF4 was independent of Myd88. Interestingly, β-glucan induced autophagy in ZF4 cells after SVCV infection. Inhibition of autophagy blocked the antiviral effect of β-glucan in ZF4 cells. Lastly, dietary β-glucan changed the composition of intestinal microbiota in zebrafish, with reduced abundance of Proteobacteria and an enrichment of Fusobacteria and Firmicutes. To sum up, our results indicate that the β-glucan enhanced resistance of zebrafish against SVCV and the mechanism involved stimulation of type I IFN antiviral immune response of fish after viral infection.
Errata / Notes
This article is corrected by ZDB-PUB-240305-8.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping