PUBLICATION

In vivo tracking of KCC2b expression during early brain development

Authors
Jones, E.F., Butler, M.G., Trendafilova, D., Mendez, M.S., Jernigan, L.A., Gahtan, E., Steele, J.
ID
ZDB-PUB-221018-26
Date
2022
Source
The Journal of comparative neurology   531(1): 48-57 (Journal)
Registered Authors
Gahtan, Ethan
Keywords
none
MeSH Terms
  • Animals
  • Brain/metabolism
  • Neurons/metabolism
  • Symporters*/metabolism
  • Zebrafish/metabolism
PubMed
36217249 Full text @ J. Comp. Neurol.
Abstract
The neuronal chloride (Cl-) exporter, KCC2, regulates neuron excitability and development and undergoes a stereotypical pattern of delayed upregulation as neurons mature. KCC2 upregulation favors neural inhibition by establishing a negative Cl- gradient, ensuring GABA-induced Cl- currents are inward and inhibitory. We developed a zebrafish fluorescent reporter line, KCC2b:mCitrine, to track KCC2 expression in vivo during early brain development. KCC2b:mCitrine was first detected at 16 h postfertilization and by day 6 labeled most central and peripheral neurons and processes. At 20 h, expression was greatest in the soma-dense basal neuroepithelium but largely absent in apical and mantle zones where differentiation and migration primarily occur, and time lapse imaging at this stage supports a postmigration upregulation of KCC2b. Central dopamine neurons showed low KCC2b expression as observed in other species. KCC2b:mCitrine fluorescence was stable over minutes in most neurons, but brightness transients observed in single cells fit our expectation for real-time tracking of KCC2b upregulation in new neurons. To further assess whether fluorescence brightness tracks KCC2b expression, zebrafish embryos were exposed to bisphenol-A (BPA), which is known to suppress KCC2 expression. Fluorescence decreased after 6 days of BPA exposure but not after 2 or 4 days, suggesting that it is an accurate but delayed indicator of KCC2b expression. KCC2b:mCitrine zebrafish present a new method for visualizing KCC2b's complex dynamics during brain development, and potentially screening compounds aimed at modulating KCC2 expression.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping