PUBLICATION

Tools to Image Germplasm Dynamics During Early Zebrafish Development

Authors
Zaucker, A., Mitchell, C.A., Coker, H.L.E., Sampath, K.
ID
ZDB-PUB-210907-6
Date
2021
Source
Frontiers in cell and developmental biology   9: 712503 (Other)
Registered Authors
Sampath, Karuna, Zaucker, Andreas
Keywords
dynamics, germ cells, germ granules, germ plasm, imaging, mounting, tools, zebrafish
MeSH Terms
none
PubMed
34485299 Full text @ Front Cell Dev Biol
Abstract
During the first day of zebrafish development, ribonucleoprotein (RNP) complexes called germplasm form large aggregates that initially segregate asymmetrically during cleavage stages. After zygotic genome activation, the granules break into smaller fragments that associate with the nuclear membrane as perinuclear (germ) granules toward the end of gastrulation. The mechanisms underlying the highly dynamic behavior of germ granules are not well studied but thought to be facilitated by the cytoskeleton. Here, we present efficient mounting strategies using 3d-printed tools that generate wells on agarose-coated sample holders to allow high-resolution imaging of multiplexed embryos that are less than one day post-fertilization (dpf) on inverted (spinning disk confocal) as well as upright (lattice light-sheet and diSPIM) microscopes. In particular, our tools and methodology allow water dipping lenses to have direct access to mounted embryos, with no obstructions to the light path (e.g., through low melting agarose or methyl cellulose). Moreover, the multiplexed tight arrays of wells generated by our tools facilitate efficient mounting of early embryos (including cleavage stages) for live imaging. These methods and tools, together with new transgenic reporter lines, can facilitate the study of germ granule dynamics throughout their lifetime in detail, at high resolution and throughput, using live imaging technologies.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping