PUBLICATION

A distributed saccade-associated network encodes high velocity conjugate and monocular eye movements in the zebrafish hindbrain

Authors
Leyden, C., Brysch, C., Arrenberg, A.B.
ID
ZDB-PUB-210622-5
Date
2021
Source
Scientific Reports   11: 12644 (Journal)
Registered Authors
Arrenberg, Aristides
Keywords
none
MeSH Terms
  • Animals
  • Neurons/physiology
  • Rhombencephalon/cytology
  • Rhombencephalon/physiology
  • Saccades/physiology*
  • Vision, Binocular/physiology*
  • Zebrafish/physiology*
PubMed
34135354 Full text @ Sci. Rep.
Abstract
Saccades are rapid eye movements that redirect gaze. Their magnitudes and directions are tightly controlled by the oculomotor system, which is capable of generating conjugate, monocular, convergent and divergent saccades. Recent studies suggest a mainly monocular control of saccades in mammals, although the development of binocular control and the interaction of different functional populations is less well understood. For zebrafish, a well-established model in sensorimotor research, the nature of binocular control in this key oculomotor behavior is unknown. Here, we use the optokinetic response and calcium imaging to characterize how the developing zebrafish oculomotor system encodes the diverse repertoire of saccades. We find that neurons with phasic saccade-associated activity (putative burst neurons) are most frequent in dorsal regions of the hindbrain and show elements of both monocular and binocular encoding, revealing a mix of the response types originally hypothesized by Helmholtz and Hering. Additionally, we observed a certain degree of behavior-specific recruitment in individual neurons. Surprisingly, calcium activity is only weakly tuned to saccade size. Instead, saccade size is apparently controlled by a push-pull mechanism of opposing burst neuron populations. Our study reveals the basic layout of a developing vertebrate saccade system and provides a perspective into the evolution of the oculomotor system.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping